2021-04-29学习笔记

今天出去玩了

IBM Model1

找到一篇好文(4条消息) NLP从入门到放弃_IBM Model1_cpyy103的博客-CSDN博客,附带了例子和程序,明天实现一下程序,深入理解一下

如果人工智能迎来下一个寒冬,你认为会是卡在什么问题上

一个有趣的思路:(29 封私信 / 82 条消息) 如果人工智能迎来下一个寒冬,你认为会是卡在什么问题上? - 知乎 (zhihu.com)

提到的观点中我能理解到的:

  • 图像分类过程,cv一直走不出单模态,但是我们人类区别一个物体,甚至是小时候认识一个苹果,都是从气味、触觉、视觉多个模态去感知的,那么也就是说,实现真正的认知,是不是要跳出单模态的囹圄呢
  • 还是图像分类过程,我们注意到,目前的分类还是比较死板,但对于桌子和椅子来说,“桌子”“椅子”这两种标签并不重要,重要的是它的实际作用,比如桌子我们人拿它来坐,它对我们来说就是椅子,那机器可否习得这个变通的过程呢
  • 可解释性的问题,比如GPT-2,作文本生成很厉害不假,但你怎么控制它生成你想要的文本呢

GAN

一个生成器,一个判别器,生成器的目标是生成让判别器混淆的,分不出来的样本数据,判别器的目标是尽可能区分不同种类的样本,目标函数如下:

D是判别器,G是生成器,判别器越好,logD(x)越大,D(G(z))越小,函数值越大,取让函数值最大的判别器D

生成器越好,就越容易让后一项越小,取让函数值最小的生成器G

形象的示意图如下:

GAN最有代表性的一个模型:DCGAN【有时间看,可以作为GAN的必读论文】

GAN的问题:

  • 不收敛
  • 如何生成离散输出
  • 如何评估
  • GAN与RL的结合
  • GAN与其他方法的结合

参考:

GAN学习指南:从原理入门到制作生成Demo - 知乎 (zhihu.com)【可以用这个里面代码理解一下GAN的算法过程,有待实现】

独家 | GAN之父NIPS 2016演讲现场直击:全方位解读生成对抗网络的原理及未来(附PPT) (sohu.com)

RL

强化学习(Reinforcement Learning)知识整理 - 知乎 (zhihu.com)【只看了刚开始的部分】

BZB推荐了一本强化学习的Book:https://bhpan.buaa.edu.cn:443/link/1C62FF5551F304BFA0B7F8A62A083B7B
 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值