今天出去玩了
IBM Model1
找到一篇好文(4条消息) NLP从入门到放弃_IBM Model1_cpyy103的博客-CSDN博客,附带了例子和程序,明天实现一下程序,深入理解一下
如果人工智能迎来下一个寒冬,你认为会是卡在什么问题上
一个有趣的思路:(29 封私信 / 82 条消息) 如果人工智能迎来下一个寒冬,你认为会是卡在什么问题上? - 知乎 (zhihu.com)
提到的观点中我能理解到的:
- 图像分类过程,cv一直走不出单模态,但是我们人类区别一个物体,甚至是小时候认识一个苹果,都是从气味、触觉、视觉多个模态去感知的,那么也就是说,实现真正的认知,是不是要跳出单模态的囹圄呢
- 还是图像分类过程,我们注意到,目前的分类还是比较死板,但对于桌子和椅子来说,“桌子”“椅子”这两种标签并不重要,重要的是它的实际作用,比如桌子我们人拿它来坐,它对我们来说就是椅子,那机器可否习得这个变通的过程呢
- 可解释性的问题,比如GPT-2,作文本生成很厉害不假,但你怎么控制它生成你想要的文本呢
GAN
一个生成器,一个判别器,生成器的目标是生成让判别器混淆的,分不出来的样本数据,判别器的目标是尽可能区分不同种类的样本,目标函数如下:
D是判别器,G是生成器,判别器越好,logD(x)越大,D(G(z))越小,函数值越大,取让函数值最大的判别器D
生成器越好,就越容易让后一项越小,取让函数值最小的生成器G
形象的示意图如下:
GAN最有代表性的一个模型:DCGAN【有时间看,可以作为GAN的必读论文】
GAN的问题:
- 不收敛
- 如何生成离散输出
- 如何评估
- GAN与RL的结合
- GAN与其他方法的结合
参考:
GAN学习指南:从原理入门到制作生成Demo - 知乎 (zhihu.com)【可以用这个里面代码理解一下GAN的算法过程,有待实现】
独家 | GAN之父NIPS 2016演讲现场直击:全方位解读生成对抗网络的原理及未来(附PPT) (sohu.com)
RL
强化学习(Reinforcement Learning)知识整理 - 知乎 (zhihu.com)【只看了刚开始的部分】
BZB推荐了一本强化学习的Book:https://bhpan.buaa.edu.cn:443/link/1C62FF5551F304BFA0B7F8A62A083B7B