优化算法 (Optimization algorithms)

本文介绍了深度学习中常用的优化算法,包括mini-batch梯度下降法及其理解、动量梯度下降法、RMSprop和Adam算法。通过效果对比展示了不同算法在处理数据时的行为,强调了学习率衰减在训练过程中的重要性。
课程来自CS230    
优化算法,这能让你的神经网络运行得更快。机器学习的应用是一个高度依赖经验的过程,伴随着大量迭代的过程,你需要训练诸多模型,才能找到合适的那一个,所以,优化算法能够帮助你快速训练模型。

Mini-batch

深度学习可以在大数据领域发挥出最大的效果,我们可以利用一个巨大的数据集来训练神经网络,但在这个体量的数据集上,迭代训练的速度将会很慢。所以首先来谈谈 mini-batch 梯度下降法。

        之前的课程课程提到过,python的广播机制能让向量化有效地对所有𝑚个样本进行计算,允许你处理整个训练集,而无需某个明确的公式。当 我们要把训练样本放大巨大的矩阵 𝑋 当中去, 𝑋 = [𝑥^ (1) 𝑥^ (2) 𝑥^ (3) … … 𝑥^ (𝑚) ] 𝑌也是如此, 𝑌 = [𝑦^ (1) 𝑦^ (2) 𝑦^ (3) … … 𝑦^ (𝑚) ]
        
        所以𝑋 的维数是 (𝑛 𝑥 , 𝑚) 𝑌 的维数是 (1, 𝑚) ,向量化能够让你相对较快地处理所有 𝑚 个样本。如果𝑚 很大的话,处理速度仍然缓慢。比如说,如果 𝑚 500 万或 5000 万或者更大的一个数,在对整个训练集执行梯度下降法时,必须处理整个训练集,然后才能进行一步梯度下降法,然后你需要再重新处理 500 万个训练样本,才能进行下一步梯度下降法。所以如果你在处理完整个 500 万个样本的训练集之前,先让梯度下降法处理一部分,你的算法速度会更快。
     
        你可以把训练集分割为小一点的子集训练,这些子集被取名为 mini-batch ,假设每一个子集中只有 1000 个样本,那么把其中的 𝑥^ (1) 𝑥^ (1000) 取出来,将其称为第一个子训练集,也叫做 mini-batch ,然后你再取出接下来的 1000 个样本,从 𝑥^ (1001) 𝑥^ (2000) ,然后再取 1000个样本,以此类推。
        把𝑥 (1) 𝑥 (1000) 称为 𝑋^ {1} 𝑥^ (1001) 𝑥^ (2000) 称为 𝑋^ {2} ,如果 你的训练样本一共有 500 万个,每个 mini-batch 都有 1000 个样本,也就是说,你有 5000 mini-batch.  对 𝑌 也要进行相同处理,你也要相应地拆分 𝑌 的训练集,所以这是𝑌^{1},然后从𝑦^(1001)到𝑦^(2000),这个叫𝑌^{2},一直到𝑌^{5000}。 mini-batch 的数量  𝑡  组成了  𝑋^ {𝑡}  和  𝑌^ {𝑡} ,这就是 1000 个训练样本,包含相应的输入输出对。
            
𝑋 {𝑡} 𝑌 {𝑡} 的维数:如果 𝑋^ {1} 是一个有 1000 个样本的训练集,或者说是 1000 个样本的 𝑥 值,所以维数应该是(𝑛 𝑥 , 1000) 𝑋^ {2} 的维数应该是 (𝑛 𝑥 , 1000) ,以此类推。因此所有的子集维数都是(𝑛 𝑥 , 1000) ,而这些( 𝑌^ {𝑡} )的维数都是 (1,1000)

mini-batch 的梯度下降法

每次同时处理的单个的 mini-batch 𝑋^ {𝑡} 𝑌^ {𝑡} ,而不是同时处理全部的  𝑋  和  𝑌  训练集。 还是使用前面500万训练样本数据集的例子在训练集上运行 mini-batch 梯度下降法,
运行 for t=1, ……, 5000,因为我们有 5000 个各有 1000 个样本的组,在 for 循环里 就是对𝑋^ {𝑡} 𝑌^ {𝑡} 执行一步梯度下降法。假设你有一个拥有 1000 个样本的训练集, 之前的学习中已经很熟悉一次性处理完的方法,现在就是用之前向量化的方法去处理 1000 个样本。
        首先对输入也就是 𝑋 {𝑡} ,执行前向传播,然后执行 𝑧^ [1] = 𝑊^ [1] 𝑋 + 𝑏^ [1],这个公式是之前batch前向传播的公式,是处理整个训练集,代码如下:
parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate * grads['dW' + str(l+1)]
parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate * grads['db' + str(l+1)]
这里需要处理第一个 mini-batch,所以在处理 mini-batch 时 𝑋 改成 𝑋{𝑡},即𝑧^[1] = 𝑊^[1]𝑋^{𝑡} + 𝑏^[1],然后一直到𝐴^[𝐿] = 𝑔^[𝐿](𝑍^[𝐿]),这就是得到的预测值。这个向量化的执行命令,一次性处理 1000 个而不是 500 万个样本。
         接下来计算损失成本函数𝐽,因为子集规模是 1000,易得损失函数 𝐽 为: 
                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值