【点云系列】点云上采样

本文探讨点云上采样的方法,包括PU-Net、MPU、PU-GAN和PU-GCN,强调学习点的多层次特征和分布均匀性。通过网络架构如补丁提取、特征嵌入、特征扩展和坐标重建,实现点云的上采样。PU-GAN提出up-down-up expansion unit和self-attention unit,而PU-GCN则利用图卷积网络增强结构保留。点云上采样面临洞区过拟合问题,各方法致力于提高细节保留和效率。
摘要由CSDN通过智能技术生成

分享4篇点云上采样的文章:
PU-Net -->MPU–>PU-GAN–>PU-GCN

在这里插入图片描述
核心思想:学习每个点的多层次特征,利用不同的卷积分支在特征空间中进行扩充,然后将扩充后的特征进行分解并重建为上采样点云集。
度量标准:分布均匀性和距下层表面的距离偏差;

网络架构
1.补丁提取

  • 在物体表面随机选取M个点。从每个点出发,生成物体的一个表面块,在每个块中的任何点距离曲面上选定点都在一个集合距离d下。
  • 然后使用Possion disk sampling为每个块随机生成 N ^ \hat{N}
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值