分享4篇点云上采样的文章:
PU-Net -->MPU–>PU-GAN–>PU-GCN
核心思想:学习每个点的多层次特征,利用不同的卷积分支在特征空间中进行扩充,然后将扩充后的特征进行分解并重建为上采样点云集。
度量标准:分布均匀性和距下层表面的距离偏差;
网络架构:
1.补丁提取:
- 在物体表面随机选取M个点。从每个点出发,生成物体的一个表面块,在每个块中的任何点距离曲面上选定点都在一个集合距离d下。
- 然后使用Possion disk sampling为每个块随机生成 N ^ \hat{N}