【点云上采样】三维点云特征上采样

本文介绍了三维点云上采样的实现原理,不同于一维和二维数据的插值上采样,点云上采样关注特征维度的增加而非点的数量。文中详细阐述了PointNet++中的特征上采样过程,包括距离矩阵计算、加权平均插值等步骤,并提供了示例代码展示如何进行特征维度的拼接和卷积操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文为博主原创文章,未经博主允许不得转载。
本文为专栏《python三维点云从基础到深度学习》系列文章,地址为“https://blog.csdn.net/suiyingy/article/details/124017716”。

        一维和二维数据上采样通常是通过插值的方法来增加点的个数。三维点云上采样理论上也可以通过这个方法来进行。这些上采样的方法均是增加点的数量。但三维空间中点的分布并不是很均匀,不便于定义插值点的位置。因此,本节主要是针对于点云的特征进行上采样,增加的不是点的数量,而是点的特征维度,来源于PointNet++。

         一维和二维数据上采样通常是通过插值的方法来增加点的个数。三维点云上采样理论上也可以通过这个方法来进行。这些上采样的方法均是增加点的数量。但三维空间中点的分布并不是很均匀,不便于定义插值点的位置。因此,本节主要是针对于点云的特征进行上采样,增加的不是点的数量,而是点的特征维度,来源于PointNet++。

1 点云特征上采样实现原理

        PointNet++的上采样是通过插值来实现的,并且插值依赖于前后两层特征。假设前一层的点数N=64,后一层点数S=16,那么插值的任务就是把后一层的点数插值成64。主要步骤如下:

        (1)以前一层的64个点为参考点,分别计算这64个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Coding的叶子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值