本文为博主原创文章,未经博主允许不得转载。
本文为专栏《python三维点云从基础到深度学习》系列文章,地址为“https://blog.csdn.net/suiyingy/article/details/124017716”。
一维和二维数据上采样通常是通过插值的方法来增加点的个数。三维点云上采样理论上也可以通过这个方法来进行。这些上采样的方法均是增加点的数量。但三维空间中点的分布并不是很均匀,不便于定义插值点的位置。因此,本节主要是针对于点云的特征进行上采样,增加的不是点的数量,而是点的特征维度,来源于PointNet++。
一维和二维数据上采样通常是通过插值的方法来增加点的个数。三维点云上采样理论上也可以通过这个方法来进行。这些上采样的方法均是增加点的数量。但三维空间中点的分布并不是很均匀,不便于定义插值点的位置。因此,本节主要是针对于点云的特征进行上采样,增加的不是点的数量,而是点的特征维度,来源于PointNet++。
1 点云特征上采样实现原理
PointNet++的上采样是通过插值来实现的,并且插值依赖于前后两层特征。假设前一层的点数N=64,后一层点数S=16,那么插值的任务就是把后一层的点数插值成64。主要步骤如下:
(1)以前一层的64个点为参考点,分别计算这64个