Open3d点云采样算法

1、随机采样(Random Sample)

pcd_down = pcd.random_down_sample(sampling_ratio)

随机选择一些点保留,最简单的实现方法,当选择的随机数是均匀分布时,也可以理解成均匀采样
sampling_ratio是采样比例,即保留sampling_ratio的点

2、均匀采样(Uniform Sample)

pcd_down = pcd.uniform_down_sample(every_k_points)

等间隔保留点,每隔every_k_points个点,保留一个点

3、体素采样(Voxel Sample)

pcd_down = pcd.voxel_down_sample(voxel_size=0.05)

voxel_size为体素的尺寸大小,体素的尺寸越大,下采样的倍数越大,点云也就越稀疏。voxel_size越小,会生成更细的网格和更多的点。
空间八叉树的叶子结点里,选择一个点代表叶子里的所有点

4、最远点采样(Farthest Point Sample)

pcd_down = pcd.farthest_point_down_sample(num_samples)

首先随机选择一个点,其次,在剩下点中寻找最远的点,再去再剩下点中找到同时离这两个点最远的点……,以此类推,直到满足采样点个数。

5、基于曲率的采样

首先计算每一点的曲率值,然后根据点云的曲率的值从大到小按照一定的比例保留采样点。这种采样方法保留的点具有明显的特征,主要集中在点云场景的边缘、拐点等位置。

6、法向降采样

在局部区域内,根据法线的方向,采样保留点法线方向较为分散的点,这样可以有效的保留点云的特征细节。

### Open3D点云处理算法实现方法 #### K-Means 聚类算法 K-means 是一种常用的无监督学习算法,用于将数据集中的点划分为多个簇。该算法通过迭代优化来最小化各簇内样本之间的距离平方和。具体到点云处理领域,K-means 可以帮助识别并分离不同的几何结构。 对于 Open3D 库而言,可以利用其内置函数轻松完成这一过程: ```python import open3d as o3d import numpy as np # 加载点云文件 pcd = o3d.io.read_point_cloud("path_to_pcd_file.ply") # 将点云转换成numpy数组形式以便于操作 points = np.asarray(pcd.points) # 使用kmeans进行聚类分析, 假设要分成5个类别 labels = pcd.cluster_dbscan(eps=0.02, min_points=10)[^1] # 给每个分类后的点上色 colors = plt.get_cmap("tab20")(labels / (np.max(labels) if max(labels) != 0 else 1)) pcd.colors = o3d.utility.Vector3dVector(colors[:, :3]) o3d.visualization.draw_geometries([pcd]) ``` 需要注意的是,在上述代码片段中 `cluster_dbscan` 函数实际上实现了 DBSCAN 算法而非严格意义上的 k-means;这里仅作为示例展示如何对点云集进行简单的划分。如果确实需要执行标准的 k-means,则需调用其他库如 scikit-learn 或者手动编写相应的逻辑。 #### Resampling 重采样技术 当面对高密度或不均匀分布的原始扫描数据时,可以通过 resampling 技术调整点的数量与布局,从而提高后续建模效率以及视觉效果质量。下面给出了一种基于多项式拟合和平滑滤波器相结合的方式来进行表面重构的例子: ```python import pcl cloud = pcl.load_XYZRGB('your_point_cloud.pcd') # 创建体素网格过滤对象 voxel_grid_filter = cloud.make_voxel_grid_filter() leaf_size = 0.01 # 设置体素大小参数 voxel_grid_filter.set_leaf_size(leaf_size, leaf_size, leaf_size) filtered_cloud = voxel_grid_filter.filter() # 执行统计异常值移除 statistical_outlier_removal = filtered_cloud.make_statistical_outlier_remover() so_ratio = 1.0 nn = 10 statistical_outlier_removal.set_mean_k(nn) statistical_outlier_removal.set_stddev_mul_thresh(so_ratio) final_filtered_cloud = statistical_outlier_removal.filter() pcl.save(final_filtered_cloud.to_array(), 'resampled_point_cloud.pcd') ``` 此段脚本首先应用了 Voxel Grid Filter 来减少冗余信息量,接着采用 Statistical Outlier Removal 方法去除离群点,最终保存经过预处理的新版本点云模型[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值