Feature-Driven Robust Surgery Scheduling 搬运

摘要

患者特征(如性别、年龄和潜在疾病)对于提高手术持续时间的模型逼真度至关重要。在本文中,我们研究了一个由患者特征分割增强的鲁棒手术调度问题。
我们专注于为择期患者和未来紧急情况分配手术室到手术室。使用特征数据,我们使用机器学习方法将患者分类为不同类型,并通过基于特征的聚类模糊集来表征不确定的手术持续时间。我们提出了一种特征驱动的自适应鲁棒优化模型,该模型最小化了加班风险指数,这有助于降低加班的幅度和概率。该模型可以重新表述为二阶二次规划问题。从公式中,我们发现最小化加班风险指数等同于最小化Fano因子。这使得我们的稳健优化模型很容易被医疗保健从业者解释。为了有效地解决这个问题,我们开发了一种分支和切割算法,并引入了对称破坏约束。数值实验表明,我们的模型在各种性能指标上优于基准模型。

1 引言

手术室(OR)是医院的关键资源,产生约40%的收入,同时消耗9-10%的支出(Denton等人,2010年)。有效的手术安排在提高手术室管理绩效方面发挥着核心作用。在我们的合作医院(中国东北部的一家主要医院)的外科,手术需求量大,手术室资源供应有限,这两者之间存在不匹配,这导致了严重的加班风险,并对患者的安全、外科医生的满意度和医院收入产生了负面影响。这种现象在其他国家也很常见外科,特别是发展中国家的外科(Neal等人,2017,Zhang等人,2020)。
在本文中,我们研究了一个手术调度问题,将择期和潜在的急诊患者分配给能力有限的手术室,最终目标是保护系统免受超时风险。
随着信息技术的进步,医院现在可以比以前更容易地记录、提取和访问个性化医疗数据(Bartek等人2019,Bertsimas等人2022)。一旦患者入院登记,就可以检索其电子病历,包括患者特征和医疗流程,以实现数据驱动和个性化的医疗决策。患者的年龄、性别和潜在疾病等特征可能会影响手术时间。例如,对于患有严重基础疾病的老年患者,手术更为困难;因此,他们的手术时间往往比年轻患者长。此类数据的可用性为提高手术持续时间和手术计划的模型保真度提供了机会。在本文中,我们研究了一种在手术调度中使用此类患者数据的实用方法,该方法利用了分布式鲁棒优化和机器学习的技术。
由于患者身体状况、随机到达、随机手术时间和历史数据不足的异质性,手术安排变得具有挑战性(Denton等人,2010年,Keskinocak和Savva 2020年)。由于几个原因,设计有效的手术时间表很困难。第一个挑战在于表征异质患者随机手术时间的分布。尽管患者特征有助于表征其异质性,但当根据患者特征进行分区时,历史数据可能很稀少(Bertsimas等人,2022)。例如,在数据收集的三年中,我们的合作医院每月报告的经皮冠状动脉介入治疗血栓切除术病例不超过两例。例如,Bartek等人(2019)和Ranjan等人(2017)的合作医院也观察到类似的数据稀缺。这种限制使我们无法从数据中做出可靠的概率分布推断。
第二个挑战是衡量加班的多方面风险。尽管加班费通常由医院根据其持续时间支付,但对患者、外科医生和医院的负面影响并不容易衡量(Zhang等人,2020)。特别是,预计加班时间或加班概率的度量是其中一个方面的特征,而不是两者。所采用的风险度量应理想地捕捉超时的持续时间及其概率,并进一步用于减轻手术调度中的多方面超时风险。
第三个挑战是设计一个可处理的模型,以适应未来紧急请求的不同实现。状态空间是巨大的,并且随着手术持续时间以及急诊患者的数量、到达时间和类型呈指数增长。建立一个可控制的完全自适应模型仍然具有挑战性,如果不是不可能的话(Zhou等人,2022)。因为选择的患者每日分配给手术室,紧急患者在到达时实时分配,应在模型逼真度和计算可处理性之间进行权衡。
1.1 文献综述
我们的工作涉及多个研究领域,包括手术调度问题、手术持续时间估计和数据驱动的鲁棒优化方法。
手术调度问题
近年来的许多研究都解决了医院的手术安排问题(Youn等人,2022)。
这些决策包括如何将患者分配到手术区/OR/服务器(Shylo等人,2013年,Wang等人,2019年,Jung等人,2011年,Zhang等人,2020年),如何在一天内对患者进行排序并确定其初步手术开始时间(Bandi和Gupta 2020年,Rath等人,2017年,Jung2019年),以及如何协调下游资源和人员(Naderi等人,2021,Rath等,2017年),如表1中总结的。
其中,与我们最相关的工作是Denton等人(2010)、Zhang等人(2018)和Wang等人(2019)的工作,他们也考虑了手术持续时间不确定性的OR分配问题,并使用了一个强大的优化工具来解决。然而,这些工作假设医院有专门的急诊OR,因此他们只考虑择期手术。在许多外科部门,如我们的合作伙伴,择期和急诊患者共享OR。没有考虑到紧急情况的时间表可能会导致加班时间延长和紧急情况下的治疗不足。Lamiri等人。
(2008)建议为每个手术室预留一定的应急能力。Freeman等人(2016)开发了一个手术调度模型,该模型明确考虑了手术持续时间的不确定性,并计划了潜在的随机到达的紧急需求,而不将其手术持续时间纳入计划中。
Jung等人(2019)提出了调整受紧急抵达影响的择期患者时间表的重新安排程序。
我们明确考虑了紧急情况的到达人数、患者特征和手术持续时间的不确定性,并制定了适应紧急情况患者特征的急诊到手术室分配政策。在对紧急情况进行建模时,我们的方法更加精细,因为i)我们使用患者的特征重新考虑了患者的异质性,ii)我们考虑了每个紧急情况的明确手术持续时间,而不是像Lamiri等人(2008)那样简单地为每个手术室预留容量,以及iii)我们将紧急手术持续时间整合到时间表中,与Freeman等人(2016)和Jung等人(2019)的方法相反。具体而言,受门诊预约安排中未就诊患者的建模方法启发(Shehadeh等人,2019),我们安排了一定数量的紧急情况,每种情况都有可能“不出现”(即手术持续时间为0),从而将不确定性纳入紧急情况的数量和手术持续时间。我们的自适应分配策略受到Zhou等人(2022)提出的策略的启发,其中病房入院和调度决策适合患者类型。我们将他们的想法引入到我们的环境中,并通过明确使用患者特征来定义患者类型来增强它。
估计持续时间
在经典手术计划研究中,手术持续时间通常假定为已知,其形式为确定性值(Denton等人2010年,Jung等人2019年,Naderi等人2021)、所有可能结果的不确定性集(Dento等人2010年、Rath等人2017年、Bandi和Gupta 2020年)、精确概率分布(Shylo等人2013年)、,或所有可能分布的模糊集(Zhang等人,2018,Keyvanshokooh等人,2022)。尽管上面提到的一些工作讨论了如何使用历史数据来估计手术持续时间,但它们没有充分使用患者特征信息。
一些研究致力于根据包括手术持续时间和患者特征的历史数据来估计手术持续时间。Bartek等人(2019)使用机器学习方法对手术持续时间进行点估计。Deny Ratna等人(2021)也将手术持续时间估计为由时间段表示的分类值。这两项研究的估计值旨在用于一般用途,而不限于手术安排。
一些研究将评估和优化整合到医疗保健运营中。Schiele等人(2021)提出了集成OR调度的预测模型;他们开发了一个基于神经网络的模型来预测下游床位占用率,其中手术调度决策被视为影响下游床位患者流量的输入数据。Ranjan等人(2017)开发了一个半马尔可夫模型,该模型仅使用患者轨迹数据来对患者进行聚类,基于此,他们优化了患者流,并证明了估计过程的好处。在本文中,我们使用患者特征对患者进行聚类,并估计手术持续时间的平均值和协方差,然后将其嵌入手术调度优化中。与上述工作不同,我们考虑了由于数据不足导致的手术持续时间的分布模糊性,旨在针对估计误差产生稳健的手术时间表
数据驱动分布鲁棒优化
疾病的复杂性以及患者、外科医生和手术类型的异质性使得很难准确估计手术持续时间的分布(Schiele等人,2021)。因此,手术调度的一种自然方法是分布式鲁棒优化(DRO)。它在最坏情况下对模糊集合内的所有可能分布进行调度优化。模糊集通常以描述性统计数据(如均值、协方差、均值绝对偏差和支持度)为特征(Delage和Ye 2010,Wiesemann等人2014,Bertsimas等人2019),或通过限制经验分布和任何候选分布之间的差异(Ben Tal等人2013,Mohajerin Esfahani和Kuhn 2018)。DRO已成功应用于医疗管理(参见,例如,Zhang等人2018,Wang等人2019,Keyvanshokooh等人2022)。在手术调度研究中,Denton等人(2010)使用Bertsimas和Sim(2004)的预算不确定性集描述了手术持续时间的所有可能场景。此外,Zhang等人(2018)通过基于矩的模糊集捕捉手术持续时间的分布模糊。Wang等人(2019)构建了一个包含经验均值、平均绝对偏差和手术持续时间支持的模糊集。然而,上述工作忽略了患者特征信息,这可能导致过度保守的手术时间表。
直到最近,在DRO中构造概率分布的模糊集时引入特征信息的研究很少。Kannan等人(2020)提出了基于残差的DRO框架,其中特征信息用于学习回归模型以表示问题参数并构造残差的模糊集合。Zhu等人(2022)开发了一个联合估计和鲁棒性优化框架,其中特征信息用于基于回归或最大似然度量的估计过程,以描述问题参数。Chen等人(2020)提出了一种具有事件模糊集的通用鲁棒随机优化框架,该框架足够灵活,可以将特征信息作为影响问题参数的辅助信息。利用这一框架,Hao等人(2020)的方法使用天气信息来定义不同的场景,对于每个场景,他们估计出行需求的平均值和方差,然后将其嵌入解决车辆重新定位问题。我们的方法类似于Hao等人(2020)的方法;我们使用患者特征信息来定义患者类型,对于每种类型,我们估计平均值和方差,以构建手术持续时间分布的模糊集。然而,Hao et al.(2020)中的特征信息(天气)在全球范围内影响问题参数(旅行需求),而我们的特点信息(个体患者特征)在局部范围内影响了问题参数(她的手术持续时间)。因此,我们提出了一种不同的特征驱动聚类模糊集来描述手术持续时间,为在DRO中使用个体特征信息构建模糊集提供了一种新的方法。
1。2 贡献
我们的贡献可以总结如下:
**i)手术持续时间的特征驱动表征:**与大多数忽略患者特征信息的现有研究不同,我们应用机器学习方法从数据中提取有用信息,并提出了特征驱动的聚类模糊集(FDC)&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值