图形 1.2.1 向量基础

本文介绍了向量的基本概念,包括大小、方向、零向量、点积和叉积。向量是没有位置的有向线段,标量是只有大小的量。点与向量的区别在于位置。向量乘以标量会改变其长度,点积描述向量间的相似度,而叉积得到的向量垂直于原向量。
摘要由CSDN通过智能技术生成

向量的定义: 

        向量是有大小,有方向的有向线段

        向量没有位置,只有大小和方向

标量:只有大小,没有方向的量

向量与点:

        向量与点表达形式相同,但几何意义不同

        点:有位置,没有大小或方向

        向量:没有位置,有实际大小和方向

        任何一个点都可以看做是从原点出发的向量

零向量:

        零向量是唯一一个大小为零,没有方向的向量

        零向量不是一个点,因为没有定义某个位置

        零向量表示的是没有位移,就像零标量表示的是没有数量

标量与向量的计算:

        没有加法和减法

        乘法:将每个分量都与标量相乘即可

        除法:等同于乘以标量的倒数

        几何意义:向量乘以标量的效果是以标量的大小缩放向量的长度,负值则方向相反

向量的模长:

        公式:|v| = 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值