三维重建方法3D gaussian splatting与NeRF的区别和异同

最近学习了一些三维重建相关的内容,目前比较主要的重建流派就是3DGS以及NeRF,NeRF作为2020年发布的文章轰动一时,影响深远,有很多NeRF based的相关工作在这些年涌现。3DGS作为2023年的new talk of the town,其在保证合成质量的情况下能够以数倍乃至数十倍的速度碾压许多NeRF based的方法,因此得到了广泛关注。这篇文章从几个角度比较了NeRF(最初的版本)和3D gaussian splatting的异同,道行尚浅,若有错误,欢迎大家讨论、批评、指正。

推荐一个3DGS的快速上手小项目:【3DGS入门项目】3DGS场景实时编辑

(原文中有一些词汇很难找到很恰当的中文翻译,为了不产生歧义在文中就直接使用了)

1.数据输入(INPUT)

NeRF:Nerf的输入是一张图像+该图像对应的相机位姿5D输入(xyz和θ与φ)

3DGS:3DGS的输入是由一张图像+经过SFM方法后生成的稀疏点云

比较:两者的差距

### NeRF 3D 高斯技术在三维重建中的应用 #### NeRF 技术概述 NeRF(神经辐射场)是一种用于从多视角图像合成新视图的方法。该方法通过训练一个连续的体积密度函数发射率来表示场景,从而能够渲染任意视角下的高质量图像[^3]。 具体来说,在给定一组带有姿态信息的照片集合的情况下,NeRF 使用深度学习模型预测空间中每一点的颜色不透明度。这些属性共同定义了一个隐式的体素网格,可以用来生成新的观察角度下的逼真画面。为了提高处理真实世界数据的能力,一些改进版本如 NeRF-W 被提出,它们针对自然环境中的复杂光照条件进行了优化,并加入了时间一致性等因素的支持。 ```python import torch from nerf import build_nerf_model # 构建并初始化NeRF网络结构 model = build_nerf_model() ``` #### 3D 高斯分布的应用 另一方面,基于3D高斯的技术则提供了一种不同的途径来进行高效的实时渲染。例如,在《3D Gaussian Splatting for Real-Time Radiance Field Rendering》论文中提到的方法利用了稀疏的球形高斯粒子来近似复杂的光源效果。这种方法不仅减少了计算量,还允许快速更新动态变化的内容[^1]。 对于每一个可见点云上的样本位置p_i及其对应的法向n_i,关联着一个权重w_i以及协方差矩阵Σ_i描述局部几何特征;当光线穿过此区域时,则依据这些参数计算出相应的颜色贡献c(p),最终形成完整的视觉表现形式: \[ c(\mathbf{r})=\sum_{i} w_{i}\left[\exp \left(-\frac{\|\mathbf{r}-\mu_{i}\|^{2}}{2 \sigma_{i}^{2}}\right)\right]\cdot C_{i}, \] 其中 \(C_i\) 表示第 i 个高斯项的颜色值,\(μ_i\) 是其均值向量,而 \(\sigma^2_i=diag(Σ_i)\)。 ```cpp // 计算单个高斯成分对光线上某点的影响 float gaussianContribution(const Vector3& point, const GaussianComponent& comp) { float distSquared = (point -distSquared / (2 * comp.variance)) * comp.color; } ``` #### 结合两者的优势 结合这两种技术的优点可以在保持高效的同时获得更精细的结果。比如,《Gaussian Activated Neural Radiance Fields for High Fidelity Reconstruction & Pose Estimation》研究就探索了如何将激活后的高斯组件融入到传统的NeRF框架内,以此提升重建精度姿态估计的效果[^2]。 这种混合方式使得系统能够在较低分辨率下捕捉大尺度形状特性,而在更高层次上保留细微纹理细节,进而实现了更加真实的三维重建体验。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值