【Bioinfo Blog 012】【R Code 010】——生存分析(Kaplan-Meier & Cox)

本文介绍了生存分析的基本概念,包括随访研究、生存时间和生存函数。详细讲解了Kaplan-Meier生存曲线的原理和R语言实现,包括生存函数构建和可视化。接着,探讨了Cox比例风险模型,解释了其概念和R语言实现,用于分析多因素影响。此外,还提到了log-rank检验在比较两组生存数据差异中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、生存分析(Survival Analysis)基本概念

1.1 随访研究

随访研究(follow-up study)是一种前瞻性(试验or调查)研究。

1.2 起始事件与终点事件

起始事件(initial event):反应生存时间起始特征的事件,如疾病确诊、某种疾病治疗开始等。

失效事件(failure event):在生存分析随访研究过程中,一部分研究对象可观察到死亡,可以得到准确的生存时间,它提供的信息是完全的,这种事件称为失效事件,也称之为死亡事件、终点事件。


起始事件和失效事件是相对而言的,它们都由研究目的决定,在设计时须明确规定,并在研究期间严格遵守,不能随意改变。

1.3 生存时间

广义上指某个起点事件开始到某个终点事件发生所经历的时间,度量单位可以是年、月、日、小时等,常用符号t所示。
在这里插入图片描述
生存时间类型

  1. 完全数据(complete data)
    观察对象在观察期内出现终点事件,记录到的时间信息是完整的,这种生存时间数据称为完全数据。
  2. 截尾数据(censored data)
    尚未观察到研究对象出现终点事件时,即由于某种原因停止了随访,这时记录到的时间信息是不完整的,这种生存时间数据称为不完全数据或截尾值。常用符号“+”表示。

截尾的原因
主要有3种:
①失访(lost of follow up):中途失访:包括拒绝访问、失去联系等。
②退出(quit of experiment):中途退出试验、改变治疗方案。死于其它与研究无关的原因:如肺癌患者死于心机梗塞、自杀或因车祸死亡,终止随访时间为死亡时间。
③终止(terminated):指观察期结束时仍未出现结局。

生存时间资料的整理

  1. 对于随访资料,需记录的原始数据包括
    开始观察的时点、终止观察的时点、研究对象的结局、考虑的影响因素。
  2. 生存时间为反映时间长短的指标,属数值变量:
    生存时间(t)= 终止观察的时点–开始观察的时点;
  3. 结局变量(δ)反映终点事件是否发生,为二分类的变量。
  4. 通常用(t, δ)完整地表示一个观察对象的随访结果。

1.4 生存函数(Survival Function)

1.5 常用指标

1.2 主要内容及研究方法

在这里插入图片描述

二、Kaplan-Meier 生存曲线

2.1 生存率估计的概率乘法原理

举例:
在这里插入图片描述

2.2 R语言实现

2.2.1 环境搭建

# install.packages("survminer")
# install.packages("survival")

library(survival)
library(ggplot2)
library(ggpubr)
library(survminer)
library(dplyr)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值