目录
一、生存分析(Survival Analysis)基本概念
1.1 随访研究
随访研究(follow-up study)是一种前瞻性(试验or调查)研究。
1.2 起始事件与终点事件
起始事件(initial event):反应生存时间起始特征的事件,如疾病确诊、某种疾病治疗开始等。
失效事件(failure event):在生存分析随访研究过程中,一部分研究对象可观察到死亡,可以得到准确的生存时间,它提供的信息是完全的,这种事件称为失效事件,也称之为死亡事件、终点事件。
起始事件和失效事件是相对而言的,它们都由研究目的决定,在设计时须明确规定,并在研究期间严格遵守,不能随意改变。
1.3 生存时间
广义上指某个起点事件开始到某个终点事件发生所经历的时间,度量单位可以是年、月、日、小时等,常用符号t所示。
生存时间类型
- 完全数据(complete data)
观察对象在观察期内出现终点事件,记录到的时间信息是完整的,这种生存时间数据称为完全数据。 - 截尾数据(censored data)
尚未观察到研究对象出现终点事件时,即由于某种原因停止了随访,这时记录到的时间信息是不完整的,这种生存时间数据称为不完全数据或截尾值。常用符号“+”表示。
截尾的原因
主要有3种:
①失访(lost of follow up):中途失访:包括拒绝访问、失去联系等。
②退出(quit of experiment):中途退出试验、改变治疗方案。死于其它与研究无关的原因:如肺癌患者死于心机梗塞、自杀或因车祸死亡,终止随访时间为死亡时间。
③终止(terminated):指观察期结束时仍未出现结局。
生存时间资料的整理
- 对于随访资料,需记录的原始数据包括
开始观察的时点、终止观察的时点、研究对象的结局、考虑的影响因素。 - 生存时间为反映时间长短的指标,属数值变量:
生存时间(t)= 终止观察的时点–开始观察的时点; - 结局变量(δ)反映终点事件是否发生,为二分类的变量。
- 通常用(t, δ)完整地表示一个观察对象的随访结果。
1.4 生存函数(Survival Function)
1.5 常用指标
1.2 主要内容及研究方法
二、Kaplan-Meier 生存曲线
2.1 生存率估计的概率乘法原理
举例:
2.2 R语言实现
2.2.1 环境搭建
# install.packages("survminer")
# install.packages("survival")
library(survival)
library(ggplot2)
library(ggpubr)
library(survminer)
library(dplyr)