【论文阅读笔记】knowledge graph

没什么用 


题目:An entity-guided text summarization framework with relational heterogeneous graph neural network / 一种基于关系异构图神经网络的实体导向文本摘要框架

年份:2023

摘要:文本摘要任务生成准确摘要的两个关键问题是利用文本之外的知识利用文本中的跨句关系。这两个问题的直观方法分别是知识图谱图神经网络。实体是文本和知识图谱中的语义单元。本文通过利用文本中提到的实体将图神经网络和知识图谱连接起来进行摘要来解决这两个问题。首先,利用实体构造具有加权多类型边的句子实体图来对句子关系进行建模,并提出了一种用于摘要的关系异构图神经网络来计算节点编码。其次,利用实体将图链接到知识图谱以收集知识。第三,实体指导两步摘要框架,定义了一个多任务选择器来选择显著的句子和实体,并使用一个以实体为中心的抽象器来压缩句子。通过构造句子实体图将图神经网络与知识图谱联系起来。

框架:

实验结果:

CNN/DM数据集

NYT50数据集

题目:Boosting Factual Correctness of Abstractive Summarization with Knowledge Graph / 利用知识图谱提高生成式摘要的事实正确性

年份:2020

摘要:文本摘要任务中一个常见的问题是文章中事实信息的失真或捏造。摘要和原文之间的这种不一致导致了对其适用性的各种担忧。在本文中,我们建议通过知识的融合来提高摘要的事实正确性,即从文章中提取事实关系。我们提出了一个FactAware摘要模型FASUM。在该模型中,知识信息可以通过神经图计算有机地集成到摘要生成过程中,有效地提高了事实的正确性。经验结果表明,与最先进的抽象摘要系统相比,无论是在独立训练的事实正确性评估器还是人工评估下,FASUM都能生成具有显著更高事实正确性的摘要。例如,在CNN/DaylyMail数据集中,FASUM获得的事实正确性得分比UNILM高1.2%,比BOTT高4.5%。

贡献:

1. 我们以关系知识图谱的形式从文章中提取事实信息。

2. 我们对知识图谱进行神经图计算,并将其信息集成到摘要生成的端到端过程中。

3. 我们提出了一种简单易用的度量,即匹配关系元组,来评估抽象摘要中的事实正确性。

实验结果:


题目:Knowledge Graph-Augmented Abstractive Summarization with Semantic-Driven Cloze Reward / 基于语义驱动的Cloze奖励的知识图谱增强生成式摘要

年份:2020

摘要:摘要的序列到序列模型已经得到了广泛的研究,但生成的摘要通常含有捏造的内容,并且通常被发现是接近提取的。我们认为,为了解决这些问题,总结者应该获得对输入的语义解释,例如,通过结构化表示,以允许生成更具信息性的总结。在本文中,我们提出了ASGARD,这是一种具有图形增强和语义驱动的RewarD的抽象摘要的新框架。我们建议使用双编码器——顺序文档编码器和图形结构编码器,以保持实体的全局上下文和局部特征,相互补充。我们进一步设计了一个基于多选完形填空的奖励,以推动模型更好地捕捉实体互动。结果表明,与《纽约时报》和CNN/Dai上没有知识图输入的变体相比,我们的模型产生的ROUGE分数明显更高。


题目:Multi-Document Scientific Summarization from a Knowledge Graph-Centric View / 以知识图谱为中心的多文档科学摘要

年份:2022

摘要:多文档科学摘要(MDSS)旨在为主题相关的科学论文集群生成连贯简洁的摘要。这项任务需要对论文内容的精确理解和对跨论文关系的精确建模。知识图谱为文档传递紧凑且可解释的结构化信息,这使它们成为内容建模和关系建模的理想选择。在本文中,我们提出了KGSum1,这是一个在编码和解码过程中以知识图为中心的MDSS模型。具体来说,在编码过程中,我们提出了两个基于图的模块,将知识图信息纳入纸张编码中,而在解码过程中,提出了一个两阶段解码器,首先以描述性句子的形式生成摘要的知识图信息,然后生成最终摘要。实证结果表明,所提出的体系结构比Multi-Xscience上的基线有了实质性的改进。


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 知识图谱嵌入是一种将知识图谱中的实体和关系映射到低维向量空间中的技术。它可以帮助我们更好地理解和利用知识图谱中的信息,例如实体之间的相似性和关系的强度。知识图谱嵌入在自然语言处理、推荐系统、问答系统等领域有着广泛的应用。 ### 回答2: 知识图谱嵌入(Knowledge Graph Embedding)是指将知识图谱中的实体和关系表示为低维向量的过程,从而方便计算机进行数据处理和分析。通常情况下,知识图谱以三元组的形式呈现,即(头实体,关系,尾实体)。但是,这种表示方式存在一些问题,如数据稀疏性、无法进行复杂的语义推理和不适合用于大规模机器学习等问题。 知识图谱嵌入方法通过将实体和关系嵌入到低维向量中,使得实体之间和关系之间的相似度可以被量化,方便计算机进行数据处理和分析。常用的嵌入方法有TransE、TransR、TransH等等,这些方法可以将实体和关系嵌入到低维向量空间中,并保持一定的语义一致性和结构一致性,从而实现对实体和关系的推断和理解。 知识图谱嵌入技术可以应用于许多领域,如自然语言处理、推荐系统、问答系统等等。例如,在自然语言处理中,可以将实体和关系嵌入到低维向量空间中,从而实现对于实体关系的理解和推断,提高问答系统的准确性;在推荐系统中,可以将用户和商品嵌入到低维向量空间中,从而实现对于用户和商品之间的相似度计算,提高推荐系统的效果。 总之,知识图谱嵌入技术的发展可以有效地解决实体关系表示的问题,提高了计算机对于知识图谱数据的处理和分析能力,为我们提供了更加高效和精确的数据处理和分析方法。 ### 回答3: 知识图谱嵌入(knowledge graph embedding)是一种用于将知识图谱中的实体和关系等复杂结构进行编码的技术。知识图谱是一个用于存储和展示关于世界知识的图形化数据库,它由实体(例如人、地点、事件)和实体之间的关系(例如拥有、出生于、是)等构成。嵌入技术使得知识图谱更容易被机器学习算法所处理和理解。 传统的方式是将知识图谱变换为二元组形式进行处理,但这种处理方式不仅容易碰到零件、稀疏性问题,而且无法很好地进行计算。知识图谱嵌入技术的出现改变了这一问题。它通过将实体和关系嵌入到连续向量空间中,将高维空间中的非线性模式映射到低维空间中,从而方便距离计算和关系推理。这些嵌入向量能够保留知识图谱中实体和关系之间的语义关系,并且能够提供非常丰富而有效的信息。 知识图谱嵌入技术的应用包含了许多领域,如自然语言处理、计算机视觉、推荐系统等等。例如,在自然语言处理领域中,嵌入技术可以将单词和短语嵌入到向量空间中,以便于计算单词和短语之间的相似度。在推荐系统领域中,嵌入技术可以将用户和物品嵌入到向量空间中,从而在用户和物品之间建立起距离和相似度的关系,进而提高个性化推荐的效果。 目前,实体嵌入方法主要分为基于矩阵分解的方法、基于跳数预测的方法和基于神经网络的方法。而关系嵌入方法主要分为基于旋转法的模型、基于距离法的模型和基于神经网络的模型。这些方法都通过学习实体和关系嵌入表示,从而实现知识图谱的语义建模、推理和图谱补全等功能。 总之,知识图谱嵌入技术是一种将知识图谱中实体和关系嵌入到向量空间中的高效手段,其应用已经渗透到各个领域。未来,这项技术将继续发挥巨大的作用,为人们带来更多更好的智能应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值