用python贝叶斯优化器优化参数

贝叶斯优化器是一种黑盒子优化器,用来寻找最优参数。与遗传算法类似,它使用了上一次迭代的较好结果来进行下一次迭代。

这里采用python包bayes_opt 来调用。

安装

pip install bayes_opt 

导入模块

from bayes_opt import BayesianOptimization

定义待优化的函数

def evalfn(param1, param2):
	...
    return score

定义优化器

opt = BayesianOptimization(evalfn, {'param1': (0.1, 1000),  
              'param2': (0.0001, 1)  })

优化(较长时间)

opt.maximize(n_iter=15, init_points=3) 
print(opt.max)

结果(C和gamma是我这里要优化的两个参数)
在这里插入图片描述

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值