用python贝叶斯优化器优化参数

贝叶斯优化器是一种黑盒子优化器,用来寻找最优参数。与遗传算法类似,它使用了上一次迭代的较好结果来进行下一次迭代。

这里采用python包bayes_opt 来调用。

安装

pip install bayes_opt 

导入模块

from bayes_opt import BayesianOptimization

定义待优化的函数

def evalfn(param1, param2):
	...
    return score

定义优化器

opt = BayesianOptimization(evalfn, {'param1': (0.1, 1000),  
              'param2': (0.0001, 1)  })

优化(较长时间)

opt.maximize(n_iter=15, init_points=3) 
print(opt.max)

结果(C和gamma是我这里要优化的两个参数)
在这里插入图片描述

贝叶斯优化是一种用于优化黑盒函数的序列模型优化方法,常用于超参数调优和优化复杂的目标函数。在Python中,我们可以使用多个库来实现贝叶斯优化。 一个常用的库是scikit-optimize(简称skopt),它提供了贝叶斯优化的功能。你可以使用该库来定义目标函数,设置参数搜索空间,运行贝叶斯优化算法,并获取最佳参数。 下面是一个示例代码,演示了如何使用skopt进行贝叶斯优化: ```python from skopt import BayesSearchCV from sklearn.datasets import load_iris from sklearn.svm import SVC # 加载数据集 X, y = load_iris(return_X_y=True) # 定义超参数搜索空间 param_space = { 'C': (1e-6, 1e+6, 'log-uniform'), 'gamma': (1e-6, 1e+1, 'log-uniform'), 'kernel': ['linear', 'rbf'] } # 定义目标函数 def objective(params): clf = SVC(**params) return -np.mean(cross_val_score(clf, X, y, cv=5, n_jobs=-1, scoring='accuracy')) # 运行贝叶斯优化 opt = BayesSearchCV(SVC(), param_space, n_iter=50, n_jobs=-1) opt.fit(X, y) # 输出最佳参数和对应的目标函数值 print("Best accuracy: %.4f" % opt.best_score_) print("Best parameters: ", opt.best_params_) ``` 在这个示例中,我们使用贝叶斯优化来寻找SVM分类的最佳超参数。我们定义了超参数的搜索空间,并使用交叉验证评估每个参数组合的性能。最后,我们输出了找到的最佳参数和对应的目标函数值。 除了skopt外,还有其他库,如hyperopt和Optuna,也提供了贝叶斯优化的功能。你可以根据自己的需求选择合适的库来实现贝叶斯优化
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值