使用win10+RTX4000从零搭建pytorch+CUDA+cudnn的经验之谈

前言

最近有本地部署深度学习模型的需求,故采购了新电脑,以往都是在云端已经搭建好的环境下操作,还从来没有本地从零搭建,所以来总结一下昨天搭建时碰到的障碍和一些经验分享。注:本文不提供具体教程,因为写同类文章的太多了,需要可以点击这里另,本文预装torch版本为1.9,明面上支持的cuda版本为10.2,但实际上最新的CUDA11.5也一样能用,所以啥都装最新的就完事了。别信啥特定版本匹配兼容什么的,问就装最新。

拿到新电脑,我该做什么?

我的第一步:找到英伟达控制面板和体验中心(安装最新显卡驱动)
一般来说,英伟达控制面板,即NVIDIA控制面板,在右下角设置里右键是可以找到的,而GeForce Experience是多数游戏电脑会预装,正经电脑不会预装这个,但它用来更新显卡驱动很方便。
在这里插入图片描述
然后点开面板可能会报第一个错误:NVIDIA显示设置不可用:您当前未使用连接到NVIDIA GPU 的显示器。这个错误在台式电脑上就是线插错了,没有把线接到独立显卡上。在拆开机箱重新插线后,此错误解决。
然后可以像大多数教程里所说的查看显卡驱动信息和帮助里的系统信息。<

安装CUDAPyTorch的步骤如下: 1. 首先,为了安装CUDAPyTorch,你需要先下载并安装适合你的操作系统的CUDA。具体的版本可以通过搜索"CUDA下载"来找到。请确保你下载的是与你的操作系统和显卡兼容的版本。 2. 在安装CUDA之后,你需要安装Anaconda。Anaconda是一个用于数据科学和机器学习的Python发行版。你可以在Anaconda官方网站上下载适合你操作系统的Anaconda版本,并按照官方指南进行安装。 3. 安装Anaconda后,可以通过命令行运行以下命令来安装PyTorch: ``` pip install torch torchvision ``` 4. 安装完成后,你可以验证PyTorch是否能够识别你的显卡。在Python的交互式环境中运行以下命令: ``` import torch torch.cuda.is_available() torch.cuda.device_count() torch.cuda.current_device() torch.cuda.get_device_capability(device) torch.cuda.get_device_name(device) ``` 如果上述命令都能够正常输出结果,说明安装成功。 总结起来,安装RTX 4050的CUDAPyTorch的步骤包括下载并安装适合你操作系统的CUDA,安装Anaconda,使用pip安装PyTorch,然后验证PyTorch是否能够正确识别你的显卡。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [使用win10+RTX4000搭建pytorch+CUDA+cudnn经验之谈](https://blog.csdn.net/weixin_43945848/article/details/121627899)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值