ZAO 背后的深度学习算法原理浅析

本文深入探讨了ZAO应用背后的深度学习算法,尤其是基于GAN的换脸技术。通过人脸检测、关键点识别和3D人脸关键点检测实现自然的换脸效果。CycleGAN的引入减少了人工痕迹,提升换脸的真实感。尽管存在隐私问题,但ZAO的技术创新值得学习。
摘要由CSDN通过智能技术生成

ZAO最近火爆,成为现象级产品之一,引起大家的广泛关注,ATA上面已经有同学做了一些说明分析。

上面文章介绍了ZAO是基于deep fake算法演变出来的一种产品,并提供了deepFake lab的下载地址,计算机硬件的要求等等。本文从更底层的算法角度出发,带大家深入到算法本质,去理解ZAO究竟是如何基于GAN来进行换脸的。

首先,我们给出一张换脸的整体流程图:

图片来源:Exposing DeepFake Videos By Detecting FaceWarping Artifacts

上图展示了基于deepFake换脸算法的一般流程,首先对于输入图片(a)原图做人脸检测(b),检测出人脸后进行关键点检测(c)。之后(c)通过变换矩阵(d)来实现人脸摆正,之后将摆正后的人脸进入DeepFake(GAN/CycleGAN)来实现人脸替换,之后将替换后的人脸(g)通过变换矩阵的反变换来做关键点对齐,最后替换回原图进行融合最终得到(i)和(h)。

这里我们给出的是图像上人脸替换的一般流程,那对于短视频而言,就需要先对视频进行截帧,然后逐帧进行人脸替换,在视频帧替换过程中要有人脸识别的网络来保证替换的对象保持统一性(具体理解就是比如我们要替换一段视频中小燕子的脸,那就要识别出检测的人脸是不是小燕子的,不能

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值