参考论文:
Boucheron, L.E., Vincent, T., Grajeda, J.A. et al. Solar active region magnetogram image dataset for studies of space weather. Sci Data 10, 825 (2023). 链接.https://doi.org/10.1038/s41597-023-02628-8
物理特征计算代码
https://github.com/DuckDuckPig/AR-flares/blob/master/classifier_SVM/FunctionsP3.py
梯度特征(Gradient Features)
-
梯度均值(Gradient mean)
- 物理解释:磁场梯度的平均值,表示整个磁场区域的梯度强度的平均水平。
- 单位:高斯每像素(G/pixel)
- 公式计算:
Gradient mean = 1 N ∑ i = 1 N ∣ ∇ B i ∣ \text{Gradient mean} = \frac{1}{N} \sum_{i=1}^{N} |\nabla B_i| Gradient mean=N1i=1∑N∣∇Bi∣
其中 ∣ ∇ B i ∣ |\nabla B_i| ∣∇Bi∣ 是第 i i i 个像素的磁场梯度, N N N 是像素总数。
-
梯度标准差(Gradient std)
- 物理解释:磁场梯度的标准差,表示梯度强度的离散程度。
- 单位:高斯每像素(G/pixel)
- 公式计算:
Gradient std = 1 N − 1 ∑ i = 1 N ( ∣ ∇ B i ∣ − Gradient mean ) 2 \text{Gradient std} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (|\nabla B_i| - \text{Gradient mean})^2} Gradient std=N−11i=1∑N(∣∇Bi∣−Gradient mean)2
-
梯度中位数(Gradient median)
- 物理解释:磁场梯度的中位数,表示梯度强度的中间值。
- 单位:高斯每像素(G/pixel)
- 公式计算:排序后的梯度值的中间值。
-
梯度最小值(Gradient min)
- 物理解释:磁场梯度的最小值。
- 单位:高斯每像素(G/pixel)
- 公式计算:梯度值中的最小值。
-
梯度最大值(Gradient max)
- 物理解释:磁场梯度的最大值。
- 单位:高斯每像素(G/pixel)
- 公式计算:梯度值中的最大值。
-
梯度偏度(Gradient skewness)
- 物理解释:磁场梯度分布的偏斜程度。
- 单位:无单位(无量纲)
- 公式计算:
Gradient skewness = 1 N ∑ i = 1 N ( ∣ ∇ B i ∣ − Gradient mean ) 3 ( Gradient std ) 3 \text{Gradient skewness} = \frac{\frac{1}{N} \sum_{i=1}^{N} (|\nabla B_i| - \text{Gradient mean})^3}{(\text{Gradient std})^3} Gradient skewness=(Gradient std)3N1∑i=1N(∣∇Bi∣−Gradient mean)3
-
梯度峰度(Gradient kurtosis)
- 物理解释:磁场梯度分布的峰度,表示分布形状的陡峭程度。
- 单位:无单位(无量纲)
- 公式计算:
Gradient kurtosis = 1 N ∑ i = 1 N ( ∣ ∇ B i ∣ − Gradient mean ) 4 ( Gradient std ) 4 \text{Gradient kurtosis} = \frac{\frac{1}{N} \sum_{i=1}^{N} (|\nabla B_i| - \text{Gradient mean})^4}{(\text{Gradient std})^4} Gradient kurtosis=(Gradient std)4N1∑i=1N(∣∇Bi∣−Gradient mean)4
中性线特征(Neutral Line Features)
-
中性线长度(NL length)
- 物理解释:中性线的总长度,即磁场中正负极性边界线的总长度。
- 单位:像素(pixel)或弧秒(arcsecond)
- 公式计算:对中性线进行长度测量。
-
中性线片段数量(NL no. Fragments)
- 物理解释:中性线被分割成的片段数量。
- 单位:无单位(无量纲)
- 公式计算:中性线的片段数量计数。
-
梯度加权中性线长度(NL gradient-weighted length)
- 物理解释:考虑磁场梯度加权的中性线长度。
- 单位:高斯(G)
- 公式计算:
NL gradient-weighted length = ∑ segments length i × mean gradient i \text{NL gradient-weighted length} = \sum_{\text{segments}} \text{length}_{i} \times \text{mean gradient}_{i} NL gradient-weighted length=segments∑lengthi×mean gradienti
-
中性线曲率均值(NL curvature mean)
- 物理解释:中性线曲率的平均值。
- 单位:像素倒数(1/pixel)或弧秒倒数(1/arcsecond)
- 公式计算:曲率值的平均值。
-
中性线曲率标准差(NL curvature std)
- 物理解释:中性线曲率的标准差。
- 单位:像素倒数(1/pixel)或弧秒倒数(1/arcsecond)
- 公式计算:曲率值的标准差。
-
中性线曲率中位数(NL curvature median)
- 物理解释:中性线曲率的中位数。
- 单位:像素倒数(1/pixel)或弧秒倒数(1/arcsecond)
- 公式计算:曲率值的中位数。
-
中性线曲率最小值(NL curvature min)
- 物理解释:中性线曲率的最小值。
- 单位:像素倒数(1/pixel)或弧秒倒数(1/arcsecond)
- 公式计算:曲率值的最小值。
-
中性线曲率最大值(NL curvature max)
- 物理解释:中性线曲率的最大值。
- 单位:像素倒数(1/pixel)或弧秒倒数(1/arcsecond)
- 公式计算:曲率值的最大值。
-
中性线弯曲能量均值(NL bending energy mean)
- 物理解释:中性线弯曲能量的平均值。
- 单位:高斯平方每像素(G²/pixel)
- 公式计算:弯曲能量的平均值。
-
中性线弯曲能量标准差(NL bending energy std)
- 物理解释:中性线弯曲能量的标准差。
- 单位:高斯平方每像素(G²/pixel)
- 公式计算:弯曲能量的标准差。
-
中性线弯曲能量中位数(NL bending energy median)
- 物理解释:中性线弯曲能量的中位数。
- 单位:高斯平方每像素(G²/pixel)
- 公式计算:弯曲能量的中位数。
-
中性线弯曲能量最小值(NL bending energy min)
- 物理解释:中性线弯曲能量的最小值。
- 单位:高斯平方每像素(G²/pixel)
- 公式计算:弯曲能量的最小值。
-
中性线弯曲能量最大值(NL bending energy max)
- 物理解释:中性线弯曲能量的最大值。
- 单位:高斯平方每像素(G²/pixel)
- 公式计算:弯曲能量的最大值。
小波特征(Wavelet Features)
-
小波能量一级(Wavelet energy level 1)
- 物理解释:小波分解后一级的能量。
- 单位:高斯平方(G²)
- 公式计算:一级小波系数的平方和。
-
小波能量二级(Wavelet energy level 2)
- 物理解释:小波分解后二级的能量。
- 单位:高斯平方(G²)
- 公式计算:二级小波系数的平方和。
-
小波能量三级(Wavelet energy level 3)
- 物理解释:小波分解后三级的能量。
- 单位:高斯平方(G²)
- 公式计算:三级小波系数的平方和。
-
小波能量四级(Wavelet energy level 4)
- 物理解释:小波分解后四级的能量。
- 单位:高斯平方(G²)
- 公式计算:四级小波系数的平方和。
-
小波能量五级(Wavelet energy level 5)
- 物理解释:小波分解后五级的能量。
- 单位:高斯平方(G²)
- 公式计算:五级小波系数的平方和。
磁通量特征(Flux Features)
-
总无符号磁通量(Total unsigned flux)
- 物理解释:区域内磁场强度的绝对值总和。
- 单位:韦伯(Wb),也称为麦克斯韦(Mx)
- 公式计算:
Total unsigned flux = ∑ i = 1 N ∣ B i ∣ \text{Total unsigned flux} = \sum_{i=1}^{N} |B_i| Total unsigned flux=i=1∑N∣Bi∣
-
总有符号磁通量(Total signed flux)
- 物理解释:区域内磁场强度的总和。
- 单位:韦伯(Wb),也称为麦克斯韦(Mx)
- 公式计算:
Total signed flux = ∑ i = 1 N B i \text{Total signed flux} = \sum_{i=1}^{N} B_i Total signed flux=i=1∑NBi
-
总负磁通量(Total negative flux)
- 物理解释:区域内负磁场强度的总和。
- 单位:韦伯(Wb),也称为麦克斯韦(Mx)
- 公式计算:
Total negative flux = ∑ i = 1 B i < 0 B i \text{Total negative flux} = \sum_{i=1}^{B_i < 0} B_i Total negative flux=i=1∑Bi<0Bi
-
总正磁通量(Total positive flux)
- 物理解释:区域内正磁场强度的总和。
- 单位:韦伯(Wb),也称为麦克斯韦(Mx)
- 公式计算:
Total positive flux = ∑ i = 1 B i > 0 B i \text{Total positive flux} = \sum_{i=1}^{B_i > 0} B_i Total positive flux=i=1∑Bi>0Bi