机器学习算法基础:硬核高斯分布

提前放狠话:看不懂打si我吧,真的很细节了。
提前了解:
1、极大似然估计(MLE)、最大后验概率估计(MAP)、贝叶斯估计区别
2、正定矩阵与半正定矩阵定义性质与理解
3、马氏距离和欧式距离详解
4、参考Github笔记

高斯分布

正态分布(Normal distribution),也称“常态分布”,又名高斯分布(Gaussian distribution)。

下面将分一维和多维一一进行介绍。

拓展:
希腊字母表的第十八字母( Σ \Sigma Σ σ \sigma σ)。 Σ \Sigma Σ 英语名称:Sigma 汉语名称:西格玛(大写 Σ \Sigma Σ,小写 σ \sigma σ),第十八个希腊字母。
大写 Σ \Sigma Σ用于数学上的总和符号,比如: Σ P i \Sigma P_i ΣPi,其中 i = 1 , 2 , . . . , N i=1,2,...,N i=1,2,...,N,即为求 P 1 + P 2 + . . . + P N P_1 + P_2 + ... + P_N P1+P2+...+PN的和。小写 σ \sigma σ用于统计学上的标准差。

MLE参数估计

数据集 X X X符合某分布,且是独立同分布的( i i d iid iid),在 MLE 方法中,参数估计的方法如下:
θ M L E = a r g m a x θ log ⁡ ∏ i = 1 N p ( x i ∣ θ ) = a r g m a x θ ∑ i = 1 N log ⁡ p ( x i ∣ θ ) \theta_{MLE}=\mathop{argmax}\limits_{\theta}\log \prod\limits _{i=1}^{N}{ p(x_{i}|\theta)}\mathop{=}\limits \mathop{argmax}\limits _{\theta}\sum\limits _{i=1}^{N}\log p(x_{i}|\theta) θMLE=θargmaxlogi=1Np(xiθ)=θargmaxi=1Nlogp(xiθ)

一维情况

数据符合一维高斯分布(独立同分布):
X ∼ N ( μ , σ 2 ) X \sim \mathcal{N}(\mu,\sigma^{2}) XN(μ,σ2)
一维高斯分布的概率密度函数PDF写为:
p ( x ∣ μ , σ 2 ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 p(x|\mu,\sigma^{2})=\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2 \sigma^{2}}} p(xμ,σ2)=2π σ1e2σ2(xμ)2

我们要使用MLE进行估计的参数为: θ = ( μ , σ 2 ) \theta=(\mu,\sigma^{2}) θ=(μ,σ2)

带入 MLE 中我们考虑一维的情况
log ⁡ p ( X ∣ θ ) = ∑ i = 1 N log ⁡ p ( x i ∣ θ ) = ∑ i = 1 N log ⁡ 1 2 π σ e − ( x i − μ ) 2 2 σ 2 = ∑ i = 1 N log ⁡ 1 2 π σ e − ( x i − μ ) 2 2 σ 2 = ∑ i = 1 N log ⁡ 1 2 π σ + ∑ i = 1 N log ⁡ e − ( x i − μ ) 2 2 σ 2 = ∑ i = 1 N [   log ⁡ 1 2 π + log ⁡ 1 σ − ( x i − μ ) 2 2 σ 2 ] \begin{aligned} \log p(X|\theta)=\sum\limits _{i=1}^{N}\log p(x_{i}|\theta)&=\sum\limits _{i=1}^{N}\log \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_i-\mu)^2}{2 \sigma^{2}}}\\ \\ &=\sum\limits _{i=1}^{N}\log \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_i-\mu)^2}{2 \sigma^{2}}}\\ \\&=\sum\limits _{i=1}^{N}\log \frac{1}{\sqrt{2\pi}\sigma} + \sum\limits _{i=1}^{N} \log e^{-\frac{(x_i-\mu)^2}{2 \sigma^{2}}}\\ \\&= \sum\limits _{i=1}^{N} [\ \log\frac{1}{\sqrt{2\pi}} +\log\frac{1}{\sigma} {-\frac{(x_i-\mu)^2}{2 \sigma^{2}}}] \end{aligned} logp(Xθ)=i=1Nlogp(xiθ)=i=1Nlog2π σ1e2σ2(xiμ)2=i=1Nlog2π σ1e2σ2(xiμ)2=i=1Nlog2π σ1+i=1Nloge2σ2(xiμ)2=i=1N[ log2π 1+logσ12σ2(xiμ)2]
首先对 μ \mu μ 的极值可以得到 :
μ M L E = a r g m a x μ log ⁡ p ( X ∣ θ ) = a r g m a x μ − ∑ i = 1 N ( x i − μ ) 2 = a r g m i n μ ∑ i = 1 N ( x i − μ ) 2 \mu_{MLE}=\mathop{argmax}\limits _{\mu}\log p(X|\theta)=\mathop{argmax}\limits _{\mu}-\sum\limits _{i=1}^{N}(x_{i}-\mu)^{2}=\mathop{argmin}\limits _{\mu}\sum\limits _{i=1}^{N}(x_{i}-\mu)^{2} μMLE=μargmaxlogp(Xθ)=μargmaxi=1N(xiμ)2=μargmini=1N(xiμ)2
于是:
∂ ∂ μ ∑ i = 1 N ( x i − μ ) 2 = 0 ⟶ μ M L E = 1 N ∑ i = 1 N x i \frac{\partial}{\partial\mu}\sum\limits _{i=1}^{N}(x_{i}-\mu)^{2}=0\longrightarrow\mu_{MLE}=\frac{1}{N}\sum\limits _{i=1}^{N}x_{i} μi=1N(xiμ)2=0μMLE=N1i=1Nxi
其次对 θ \theta θ 中的另一个参数 σ \sigma σ ,有:
σ M L E = a r g m a x σ log ⁡ p ( X ∣ θ ) = a r g m a x σ ∑ i = 1 N [ − log ⁡ σ − ( x i − μ ) 2 2 σ 2 ] = a r g m i n σ ∑ i = 1 N [ log ⁡ σ + ( x i − μ ) 2 2 σ 2 ] \begin{aligned} \sigma_{MLE}=\mathop{argmax}\limits _{\sigma}\log p(X|\theta)&=\mathop{argmax}\limits _{\sigma}\sum\limits _{i=1}^{N}[-\log\sigma{-\frac{(x_i-\mu)^2}{2 \sigma^{2}}}]\\ &=\mathop{argmin}\limits _{\sigma}\sum\limits _{i=1}^{N}[\log\sigma+{\frac{(x_i-\mu)^2}{2 \sigma^{2}}}] \end{aligned} σMLE=σargmaxlogp(Xθ)=σargmaxi=1N[logσ2σ2(xiμ)2]=σargmini=1N[logσ+2σ2(xiμ)2]
于是:
∂ ∂ σ ∑ i = 1 N [ log ⁡ σ + 1 2 σ 2 ( x i − μ ) 2 ] = 0 ⟶ σ M L E 2 = 1 N ∑ i = 1 N ( x i − μ ) 2 \frac{\partial}{\partial\sigma}\sum\limits _{i=1}^{N}[\log\sigma+\frac{1}{2\sigma^{2}}(x_{i}-\mu)^{2}]=0\longrightarrow\sigma_{MLE}^{2}=\frac{1}{N}\sum\limits _{i=1}^{N}(x_{i}-\mu)^{2} σi=1N[logσ+2σ21(xiμ)2]=0σMLE2=N1i=1N(xiμ)2

有偏VS无偏

值得注意的是,上面的推导中,首先对 μ \mu μ 求 MLE, 然后利用这个结果求 σ M L E \sigma_{MLE} σMLE ,因此可以预期的是对 μ M L E \mu_{MLE} μMLE求期望时, 可以发现 μ M L E \mu_{MLE} μMLE无偏差的
E D [ μ M L E ] = E D [ 1 N ∑ i = 1 N x i ] = 1 N ∑ i = 1 N E D [ x i ] = μ \mathbb{E}_{\mathcal{D}}[\mu_{MLE}]=\mathbb{E}_{\mathcal{D}}[\frac{1}{N}\sum\limits _{i=1}^{N}x_{i}]=\frac{1}{N}\sum\limits _{i=1}^{N}\mathbb{E}_{\mathcal{D}}[x_{i}]=\mu ED[μMLE]=ED[N1i=1Nxi]=N1i=1NED[xi]=μ
但是当对 σ M L E \sigma_{MLE} σMLE 求 期望的时候由于使用了单个数据集的 μ M L E \mu_{MLE} μMLE,因为 μ M L E \mu_{MLE} μMLE不一定与所有数据的 μ \mu μ相等,因此对 σ M L E \sigma_{MLE} σMLE 求期望的时候我们会发现 σ M L E \sigma_{MLE} σMLE有偏差的

E D [ σ M L E 2 ] = E D [ 1 N ∑ i = 1 N ( x i − μ M L E ) 2 ] = E D [ 1 N ∑ i = 1 N ( x i 2 − 2 x i μ M L E + μ M L E 2 ) = E D [ 1 N ∑ i = 1 N x i 2 − μ M L E 2 ] = E D [ 1 N ∑ i = 1 N x i 2 − μ 2 + μ 2 − μ M L E 2 ] = E D [ 1 N ∑ i = 1 N x i 2 − μ 2 ] − E D [ μ M L E 2 − μ 2 ] = σ 2 − ( E D [ μ M L E 2 ] − μ 2 ) = σ 2 − ( E D [ μ M L E 2 ] − E D 2 [ μ M L E ] ) = σ 2 − V a r [ μ M L E ] = σ 2 − V a r [ 1 N ∑ i = 1 N x i ] = σ 2 − 1 N 2 ∑ i = 1 N V a r [ x i ] = N − 1 N σ 2 \begin{aligned} \mathbb{E}_{\mathcal{D}}[\sigma_{MLE}^{2}]&=\mathbb{E}_{\mathcal{D}}[\frac{1}{N}\sum\limits _{i=1}^{N}(x_{i}-\mu_{MLE})^{2}]=\mathbb{E}_{\mathcal{D}}[\frac{1}{N}\sum\limits _{i=1}^{N}(x_{i}^{2}-2x_{i}\mu_{MLE}+\mu_{MLE}^{2}) \\ \\&=\mathbb{E}_{\mathcal{D}}[\frac{1}{N}\sum\limits _{i=1}^{N}x_{i}^{2}-\mu_{MLE}^{2}]=\mathbb{E}_{\mathcal{D}}[\frac{1}{N}\sum\limits _{i=1}^{N}x_{i}^{2}-\mu^{2}+\mu^{2}-\mu_{MLE}^{2}]\\\\ &= \mathbb{E}_{\mathcal{D}}[\frac{1}{N}\sum\limits _{i=1}^{N}x_{i}^{2}-\mu^{2}]-\mathbb{E}_{\mathcal{D}}[\mu_{MLE}^{2}-\mu^{2}]=\sigma^{2}-(\mathbb{E}_{\mathcal{D}}[\mu_{MLE}^{2}]-\mu^{2})\\\\&=\sigma^{2}-(\mathbb{E}_{\mathcal{D}}[\mu_{MLE}^{2}]-\mathbb{E}_{\mathcal{D}}^{2}[\mu_{MLE}])=\sigma^{2}-Var[\mu_{MLE}]\\\\ &=\sigma^{2}-Var[\frac{1}{N}\sum\limits _{i=1}^{N}x_{i}]=\sigma^{2}-\frac{1}{N^{2}}\sum\limits _{i=1}^{N}Var[x_{i}]=\frac{N-1}{N}\sigma^{2} \end{aligned} ED[σMLE2]=ED[N1i=1N(xiμMLE)2]=ED[N1i=1N(xi22xiμMLE+μMLE2)=ED[N1i=1Nxi2μMLE2]=ED[N1i=1Nxi2μ2+μ2μMLE2]=ED[N1i=1Nxi2μ2]ED[μMLE2μ2]=σ2(ED[μMLE2]μ2)=σ2(ED[μMLE2]ED2[μMLE])=σ2Var[μMLE]=σ2Var[N1i=1Nxi]=σ2N21i=1NVar[xi]=NN1σ2

所以,无偏估计量 σ ^ 2 \hat{\sigma}^{2} σ^2如下式所示:
σ ^ 2 = 1 N − 1 ∑ i = 1 N ( x i − μ ) 2 \hat{\sigma}^{2}=\frac{1}{N-1}\sum\limits _{i=1}^{N}(x_{i}-\mu)^{2} σ^2=N11i=1N(xiμ)2

多维情况

多维高斯分布的概率密度函数PDF写为:
p ( x ∣ μ , Σ ) = 1 ( 2 π ) p / 2 ∣ Σ ∣ 1 / 2 e − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) p(x|\mu,\Sigma)=\frac{1}{(2\pi)^{p/2}|\Sigma|^{1/2}}e^{-\frac{1}{2}(x-\mu)^{T}\Sigma^{-1}(x-\mu)} p(xμ,Σ)=(2π)p/2Σ1/21e21(xμ)TΣ1(xμ)
其中 x , μ ∈ R p , Σ ∈ R p × p x,\mu\in\mathbb{R}^{p},\Sigma\in\mathbb{R}^{p\times p} x,μRp,ΣRp×p Σ \Sigma Σ 为协方差矩阵,一般也是半正定矩阵且是对称矩阵。这里我们只考虑正定矩阵。
补充:
1、设 A A A n n n阶方阵,如果对任何非零向量 x x x,都有 x T A x > 0 x^TAx>0 xTAx>0,其中 x T x^T xT表示 x x x的转置,就称 A A A为正定矩阵。
2、设 A A A是实对称矩阵,如果对任意的实非零列向量 x x x x T A x ≥ 0 x^TAx≥0 xTAx0,就称 A A A为半正定矩阵。
3、马氏距离公式: ( x − μ ) T Σ − 1 ( x − μ ) \sqrt{(x-\mu)^{T}\Sigma^{-1}(x-\mu)} (xμ)TΣ1(xμ) 。我们可以发现如果 Σ − 1 \Sigma^{−1} Σ1是单位矩阵的时候,马氏距离简化为欧氏距离。马氏距离的这一项 Σ − 1 \Sigma^{−1} Σ1起到了方差归一化的作用,可以拿一维的高斯分布举例, − 1 2 ( x − μ ) 2 σ 2 -{\frac{1}{2}}{\frac{(x-\mu)^2}{ \sigma^{2}}} 21σ2(xμ)2 σ 2 \sigma^{2} σ2等价于 Σ \Sigma Σ

首先我们处理指数上的数字,指数上的数字可以记为 x x x μ \mu μ 之间的马氏距离。对于对称的协方差矩阵可进行特征值分解, Σ = U Λ U T = ( u 1 , u 2 , ⋯   , u p ) d i a g ( λ i ) ( u 1 , u 2 , ⋯   , u p ) T = ∑ i = 1 p u i λ i u i T \Sigma=U\Lambda U^{T}=(u_{1},u_{2},\cdots,u_{p})diag(\lambda_{i})(u_{1},u_{2},\cdots,u_{p})^{T}=\sum\limits _{i=1}^{p}u_{i}\lambda_{i}u_{i}^{T} Σ=UΛUT=(u1,u2,,up)diag(λi)(u1,u2,,up)T=i=1puiλiuiT ,其中 u i ∈ R p u_i\in\mathbb{R}^{p} uiRp U , d i a g ( λ i ) ∈ R p × p U,diag(\lambda_{i})\in\mathbb{R}^{p\times p} U,diag(λi)Rp×p U U T = U T U = I UU^{T}=U^{T}U=I UUT=UTU=I,于是:

Σ − 1 = ∑ i = 1 p u i 1 λ i u i T \Sigma^{-1}=\sum\limits _{i=1}^{p}u_{i}\frac{1}{\lambda_{i}}u_{i}^{T} Σ1=i=1puiλi1uiT

Δ = ( x − μ ) T Σ − 1 ( x − μ ) = ∑ i = 1 p ( x − μ ) T u i 1 λ i u i T ( x − μ ) = ∑ i = 1 p y i 2 λ i \Delta=(x-\mu)^{T}\Sigma^{-1}(x-\mu)=\sum\limits _{i=1}^{p}(x-\mu)^{T}u_{i}\frac{1}{\lambda_{i}}u_{i}^{T}(x-\mu)=\sum\limits _{i=1}^{p}\frac{y_{i}^{2}}{\lambda_{i}} Δ=(xμ)TΣ1(xμ)=i=1p(xμ)Tuiλi1uiT(xμ)=i=1pλiyi2
其中 y i = ( x − μ ) T u i = y i T = u i T ( x − μ ) y_{i}=(x-\mu)^{T}u_{i}= y_{i}^{T} = u_{i}^{T}(x-\mu) yi=(xμ)Tui=yiT=uiT(xμ) y i y_{i} yi是一个实数。

我们注意到 y i y_{i} yi x − μ x-\mu xμ 在特征向量 u i u_{i} ui 上的投影长度,
因此上式子在二维情况下, ∑ i = 1 2 y i 2 λ i = y 1 2 λ 1 + y 2 2 λ 2 = Δ \sum\limits _{i=1}^{2}\frac{y_{i}^{2}}{\lambda_{i}}=\frac{y_{1}^{2}}{\lambda_{1}}+\frac{y_{2}^{2}}{\lambda_{2}}=\Delta i=12λiyi2=λ1y12+λ2y22=Δ就是 Δ \Delta Δ 取不同值时的同心椭圆。

我来换一个通俗易懂的讲法:
使用二维空间更直观

  • X = { x 1 , x 2 , . . . , x N } X=\{x_1,x_2,...,x_N\} X={x1,x2,...,xN},其中 x i = ( x i 1 ; x i 2 ) , i = 1 , 2 , . . . , N x_i=(x_i^1;x_i^2),i=1,2,...,N xi=(xi1;xi2),i=1,2,...,N,这些数据集 X X X构成了一个二维空间。
  • 使用 X X X分别在两个维度上确定均值, μ 1 \mu^1 μ1 μ 2 \mu^2 μ2,即可得到 μ = ( μ 1 ; μ 2 ) \mu=(\mu^1;\mu^2) μ=(μ1;μ2)
  • 如果使用的是欧式距离, u i u_{i} ui 其实一一对应坐标轴 x i x_i xi所指方向,因此 ( x − μ ) T u i (x-\mu)^{T}u_{i} (xμ)Tui两个向量相乘, y i y_{i} yi大小等于 ( x − μ ) T u i (x-\mu)^{T}u_{i} (xμ)Tui,且 λ 1 = λ 2 \lambda_{1}=\lambda_{2} λ1=λ2,在二维空间上即为一个圆。
  • 在上式为马氏距离, u i u_{i} ui 不对应坐标轴 x i x_i xi所指方向,因此 y i y_{i} yi大小等于 x − μ x-\mu xμ 在特征向量 u i u_{i} ui 上的投影长度,在原二维空间上即为一个斜的椭圆。
  • 因此马氏距离涵盖了欧式距离,它使用了各变量各自的方差去进行计算,起到了方差归一化的作用。
  • 我们也可以直观地看到高斯二维分布其实为一个椭圆型。

化简了指数部分,我们重新看一下PDF:
p ( x ∣ μ , Σ ) = 1 ( 2 π ) p / 2 ∣ Σ ∣ 1 / 2 e − 1 2 Δ p(x|\mu,\Sigma)=\frac{1}{(2\pi)^{p/2}|\Sigma|^{1/2}}e^{-\frac{1}{2}\Delta} p(xμ,Σ)=(2π)p/2Σ1/21e21Δ
当我们确定了 p ( x ∣ μ , Σ ) p(x|\mu,\Sigma) p(xμ,Σ)的值,那么我们也确定了 Δ \Delta Δ的值,就可以得到满足该条件的特征向量形成的空间,其实在二维空间,构成了一座山的等高线,椭圆形的线。

下面我们看多维高斯模型在实际应用时的两个局限性

  1. 参数过多。参数 Σ , μ \Sigma,\mu Σ,μ 的自由度为 O ( p 2 ) O(p^{2}) O(p2) 对于维度很高的数据其自由度太高。高自由度的来源是 Σ \Sigma Σ p ( p + 1 ) 2 \frac{p(p+1)}{2} 2p(p+1) 个自由参数。
    解决方法:
    可以假设其是对角矩阵,这样就不需要进行特征值分解, u i u_{i} ui的形式就满足欧式距离出现的第一种情况,然后直观展示为是正的椭圆而不是斜的椭圆。
    甚至在各向同性假设中假设其对角线上的元素都相同 u i u_{i} ui的形式就满足欧式距离出现的所有情况,然后直观展示为一个正圆形。
    前一种的算法有 Factor Analysis,后一种有概率 PCA(p-PCA) 。

  2. 第二个问题是单个高斯分布是单峰的,对有多个峰的数据分布不能得到好的模型结果。
    解决方法:
    高斯混合GMM 模型。

边缘概率以及条件概率

我们记 x = ( x 1 , x 2 , ⋯   , x p ) T = ( x a , m × 1 , x b , n × 1 ) , μ = ( μ a , m × 1 , μ b , n × 1 ) , Σ = ( Σ a a Σ a b Σ b a Σ b b ) x=(x_1, x_2,\cdots,x_p)^T=(x_{a,m\times 1}, x_{b,n\times1}),\mu=(\mu_{a,m\times1}, \mu_{b,n\times1}),\Sigma=\begin{pmatrix}\Sigma_{aa}&\Sigma_{ab}\\\Sigma_{ba}&\Sigma_{bb}\end{pmatrix} x=(x1,x2,,xp)T=(xa,m×1,xb,n×1),μ=(μa,m×1,μb,n×1),Σ=(ΣaaΣbaΣabΣbb),已知 x ∼ N ( μ , Σ ) x\sim\mathcal{N}(\mu,\Sigma) xN(μ,Σ)

首先是一个高斯分布的定理:

定理:已知 x ∼ N ( μ , Σ ) , y ∼ A x + b x\sim\mathcal{N}(\mu,\Sigma), y\sim Ax+b xN(μ,Σ),yAx+b,那么 y ∼ N ( A μ + b , A Σ A T ) y\sim\mathcal{N}(A\mu+b, A\Sigma A^T) yN(Aμ+b,AΣAT)

证明: E [ y ] = E [ A x + b ] = A E [ x ] + b = A μ + b \mathbb{E}[y]=\mathbb{E}[Ax+b]=A\mathbb{E}[x]+b=A\mu+b E[y]=E[Ax+b]=AE[x]+b=Aμ+b V a r [ y ] = V a r [ A x + b ] = V a r [ A x ] = A ⋅ V a r [ x ] ⋅ A T Var[y]=Var[Ax+b]=Var[Ax]=A\cdot Var[x]\cdot A^T Var[y]=Var[Ax+b]=Var[Ax]=AVar[x]AT

下面利用这个定理得到 p ( x a ) , p ( x b ) , p ( x a ∣ x b ) , p ( x b ∣ x a ) p(x_a),p(x_b),p(x_a|x_b),p(x_b|x_a) p(xa),p(xb),p(xaxb),p(xbxa) 这四个量。

  1. x a = ( I m × m O m × n ) ( x a x b ) x_a=\begin{pmatrix}\mathbb{I}_{m\times m}&\mathbb{O}_{m\times n}\end{pmatrix}\begin{pmatrix}x_a\\x_b\end{pmatrix} xa=(Im×mOm×n)(xaxb),代入上面的定理中可以得到:
    E [ x a ] = ( I O ) ( μ a μ b ) = μ a V a r [ x a ] = ( I O ) ( Σ a a Σ a b Σ b a Σ b b ) ( I O ) = Σ a a \mathbb{E}[x_a]=\begin{pmatrix}\mathbb{I}&\mathbb{O}\end{pmatrix}\begin{pmatrix}\mu_a\\\mu_b\end{pmatrix}=\mu_a\\ Var[x_a]=\begin{pmatrix}\mathbb{I}&\mathbb{O}\end{pmatrix}\begin{pmatrix}\Sigma_{aa}&\Sigma_{ab}\\\Sigma_{ba}&\Sigma_{bb}\end{pmatrix}\begin{pmatrix}\mathbb{I}\\\mathbb{O}\end{pmatrix}=\Sigma_{aa} E[xa]=(IO)(μaμb)=μaVar[xa]=(IO)(ΣaaΣbaΣabΣbb)(IO)=Σaa
    所以 x a ∼ N ( μ a , Σ a a ) x_a\sim\mathcal{N}(\mu_a,\Sigma_{aa}) xaN(μa,Σaa)

  2. 同样的, x b ∼ N ( μ b , Σ b b ) x_b\sim\mathcal{N}(\mu_b,\Sigma_{bb}) xbN(μb,Σbb)

  3. 对于两个条件概率,我们引入三个量(第一个式子是一个构造性证明,记住就行):
    x b ⋅ a = x b − Σ b a Σ a a − 1 x a μ b ⋅ a = μ b − Σ b a Σ a a − 1 μ a Σ b b ⋅ a = Σ b b − Σ b a Σ a a − 1 Σ a b x_{b\cdot a}=x_b-\Sigma_{ba}\Sigma_{aa}^{-1}x_a\\ \mu_{b\cdot a}=\mu_b-\Sigma_{ba}\Sigma_{aa}^{-1}\mu_a\\ \Sigma_{bb\cdot a}=\Sigma_{bb}-\Sigma_{ba}\Sigma_{aa}^{-1}\Sigma_{ab} xba=xbΣbaΣaa1xaμba=μbΣbaΣaa1μaΣbba=ΣbbΣbaΣaa1Σab
    特别的,最后一个式子叫做 Σ a a \Sigma_{aa} Σaa 的 Schur Complementary。可以看到:
    x b ⋅ a = ( − Σ b a Σ a a − 1 I n × n ) ( x a x b ) x_{b\cdot a}=\begin{pmatrix}-\Sigma_{ba}\Sigma_{aa}^{-1}&\mathbb{I}_{n\times n}\end{pmatrix}\begin{pmatrix}x_a\\x_b\end{pmatrix} xba=(ΣbaΣaa1In×n)(xaxb)
    我们重点使用第一条式子推导第二、三条式子,所以:
    E [ x b ⋅ a ] = ( − Σ b a Σ a a − 1 I n × n ) ( μ a μ b ) = μ b ⋅ a V a r [ x b ⋅ a ] = ( − Σ b a Σ a a − 1 I n × n ) ( Σ a a Σ a b Σ b a Σ b b ) ( − Σ a a − 1 Σ b a T I n × n ) = Σ b b ⋅ a \mathbb{E}[x_{b\cdot a}]=\begin{pmatrix}-\Sigma_{ba}\Sigma_{aa}^{-1}&\mathbb{I}_{n\times n}\end{pmatrix}\begin{pmatrix}\mu_a\\\mu_b\end{pmatrix}=\mu_{b\cdot a}\\ Var[x_{b\cdot a}]=\begin{pmatrix}-\Sigma_{ba}\Sigma_{aa}^{-1}&\mathbb{I}_{n\times n}\end{pmatrix}\begin{pmatrix}\Sigma_{aa}&\Sigma_{ab}\\\Sigma_{ba}&\Sigma_{bb}\end{pmatrix}\begin{pmatrix}-\Sigma_{aa}^{-1}\Sigma_{ba}^T\\\mathbb{I}_{n\times n}\end{pmatrix}=\Sigma_{bb\cdot a} E[xba]=(ΣbaΣaa1In×n)(μaμb)=μbaVar[xba]=(ΣbaΣaa1In×n)(ΣaaΣbaΣabΣbb)(Σaa1ΣbaTIn×n)=Σbba
    利用这三个量可以得到 x b = x b ⋅ a + Σ b a Σ a a − 1 x a x_b=x_{b\cdot a}+\Sigma_{ba}\Sigma_{aa}^{-1}x_a xb=xba+ΣbaΣaa1xa

    我们先推导一下下面的公式
    x ∼ N ( μ , Σ ) x\sim\mathcal{N}(\mu,\Sigma_{}) xN(μ,Σ),则 M x ⊥ N x ⇔ M Σ N T = 0 Mx\perp Nx\Leftrightarrow M\Sigma N^T=0 MxNxMΣNT=0
    如果两个随机变量均服从高斯分布,那么“不相关”等价于“独立”。

    证明: ∵ x ∼ N ( μ , Σ ) ∴ M x ∼ N ( M μ , M Σ M T ) , N x ∼ N ( N μ , N Σ N T ) ∴ C o v ( M x , N x ) = E [ ( M x − M μ ) ( N x − N μ ) T ] = E [ M ( x − μ ) ( x − μ ) T N ] = M E [ ( x − μ ) ( x − μ ) T ] N = M Σ N T ∵ M x ⊥ N 且 均 为 高 斯 ∴ C o v ( M x , N x ) = M Σ N T = 0 \begin{aligned} &\because x\sim\mathcal{N}(\mu,\Sigma_{})\\ &\therefore Mx\sim\mathcal{N}(M\mu,M\Sigma_{}M^T),Nx\sim\mathcal{N}(N\mu,N\Sigma_{}N^T)\\ &\therefore \mathbb{Cov}(Mx,Nx)\\ &= \mathbb{E}[(Mx-M\mu)(Nx-N\mu)^T]\\ &= \mathbb{E}[M(x-\mu)(x-\mu)^TN]\\ &=M \mathbb{E}[(x-\mu)(x-\mu)^T]N\\ &=M \Sigma N^T\\ &\because Mx\perp N且均为高斯\\ &\therefore \mathbb{Cov}(Mx,Nx) = M \Sigma N^T = 0 \end{aligned} xN(μ,Σ)MxN(Mμ,MΣMT),NxN(Nμ,NΣNT)Cov(Mx,Nx)=E[(MxMμ)(NxNμ)T]=E[M(xμ)(xμ)TN]=ME[(xμ)(xμ)T]N=MΣNTMxNCov(Mx,Nx)=MΣNT=0

    我们回到原来的式子:
    x b = x b ⋅ a + Σ b a Σ a a − 1 x a x_b=x_{b\cdot a}+\Sigma_{ba}\Sigma_{aa}^{-1}x_a xb=xba+ΣbaΣaa1xa
    我们辛苦构造的 x b ⋅ a x_{b\cdot a} xba有什么作用呢,其实它和 x a x_{a} xa是相互独立的,可以使用上面的公式以及前面的构造进行推导。
    ∵ x b ⋅ a ⊥ x a ⇒ x b ⋅ a ∣ x a = x b ⋅ a ∴ x b ∣ x a = x b ⋅ a ∣ x a + Σ b a Σ a a − 1 x a ∣ x a = x b ⋅ a + Σ b a Σ a a − 1 x a \because x_{b\cdot a} \perp x_a \Rightarrow x_{b\cdot a}|x_a = x_{b\cdot a}\\ \therefore x_b|x_a = x_{b\cdot a}|x_a +\Sigma_{ba}\Sigma_{aa}^{-1}x_a|x_a= x_{b\cdot a}+\Sigma_{ba}\Sigma_{aa}^{-1}x_a xbaxaxbaxa=xbaxbxa=xbaxa+ΣbaΣaa1xaxa=xba+ΣbaΣaa1xa
    所以
    E [ x b ∣ x a ] = μ b ⋅ a + Σ b a Σ a a − 1 x a \mathbb{E}[x_b|x_a]=\mu_{b\cdot a}+\Sigma_{ba}\Sigma_{aa}^{-1}x_a E[xbxa]=μba+ΣbaΣaa1xa

    V a r [ x b ∣ x a ] = Σ b b ⋅ a Var[x_b|x_a]=\Sigma_{bb\cdot a} Var[xbxa]=Σbba

    这里同样用到了定理。

  4. 同样:
    x a ⋅ b = x a − Σ a b Σ b b − 1 x b μ a ⋅ b = μ a − Σ a b Σ b b − 1 μ b Σ a a ⋅ b = Σ a a − Σ a b Σ b b − 1 Σ b a x_{a\cdot b}=x_a-\Sigma_{ab}\Sigma_{bb}^{-1}x_b\\ \mu_{a\cdot b}=\mu_a-\Sigma_{ab}\Sigma_{bb}^{-1}\mu_b\\ \Sigma_{aa\cdot b}=\Sigma_{aa}-\Sigma_{ab}\Sigma_{bb}^{-1}\Sigma_{ba} xab=xaΣabΣbb1xbμab=μaΣabΣbb1μbΣaab=ΣaaΣabΣbb1Σba
    所以:
    E [ x a ∣ x b ] = μ a ⋅ b + Σ a b Σ b b − 1 x b \mathbb{E}[x_a|x_b]=\mu_{a\cdot b}+\Sigma_{ab}\Sigma_{bb}^{-1}x_b E[xaxb]=μab+ΣabΣbb1xb

    V a r [ x a ∣ x b ] = Σ a a ⋅ b Var[x_a|x_b]=\Sigma_{aa\cdot b} Var[xaxb]=Σaab

p ( y ) , p ( x ∣ y ) p(y),p(x|y) p(y),p(xy)

线性高斯模型常见求解

已知: p ( x ) = N ( μ , Λ − 1 ) , p ( y ∣ x ) = N ( A x + b , L − 1 ) p(x)=\mathcal{N}(\mu,\Lambda^{-1}),p(y|x)=\mathcal{N}(Ax+b,L^{-1}) p(x)=N(μ,Λ1),p(yx)=N(Ax+b,L1),求解: p ( y ) , p ( x ∣ y ) p(y),p(x|y) p(y),p(xy)

解:令 y = A x + b + ϵ , ϵ ∼ N ( 0 , L − 1 ) y=Ax+b+\epsilon,\epsilon\sim\mathcal{N}(0,L^{-1}) y=Ax+b+ϵ,ϵN(0,L1),所以 E [ y ] = E [ A x + b + ϵ ] = A μ + b \mathbb{E}[y]=\mathbb{E}[Ax+b+\epsilon]=A\mu+b E[y]=E[Ax+b+ϵ]=Aμ+b V a r [ y ] = A Λ − 1 A T + L − 1 Var[y]=A \Lambda^{-1}A^T+L^{-1} Var[y]=AΛ1AT+L1,因此:
p ( y ) = N ( A μ + b , L − 1 + A Λ − 1 A T ) p(y)=\mathcal{N}(A\mu+b,L^{-1}+A\Lambda^{-1}A^T) p(y)=N(Aμ+b,L1+AΛ1AT)
引入 z = ( x y ) z=\begin{pmatrix}x\\y\end{pmatrix} z=(xy),我们可以得到 C o v [ x , y ] = E [ ( x − E [ x ] ) ( y − E [ y ] ) T ] Cov[x,y]=\mathbb{E}[(x-\mathbb{E}[x])(y-\mathbb{E}[y])^T] Cov[x,y]=E[(xE[x])(yE[y])T]。对于这个协方差可以直接计算:
C o v ( x , y ) = E [ ( x − μ ) ( A x − A μ + ϵ ) T ] = E [ ( x − μ ) ( x − μ ) T A T ] = V a r [ x ] A T = Λ − 1 A T \begin{aligned} Cov(x,y)&=\mathbb{E}[(x-\mu)(Ax-A\mu+\epsilon)^T]\\ &=\mathbb{E}[(x-\mu)(x-\mu)^TA^T]\\ &=Var[x]A^T\\ &=\Lambda^{-1}A^T \end{aligned} Cov(x,y)=E[(xμ)(AxAμ+ϵ)T]=E[(xμ)(xμ)TAT]=Var[x]AT=Λ1AT
注意到协方差矩阵的对称性,
所以 p ( z ) = N ( ( μ A μ + b ) , ( Λ − 1 Λ − 1 A T A Λ − 1 L − 1 + A Λ − 1 A T ) ) p(z)=\mathcal{N}(\begin{pmatrix}\mu\\A\mu+b\end{pmatrix},\begin{pmatrix}\Lambda^{-1}&\Lambda^{-1}A^T\\A\Lambda^{-1}&L^{-1}+A\Lambda^{-1}A^T\end{pmatrix}) p(z)=N((μAμ+b),(Λ1AΛ1Λ1ATL1+AΛ1AT))
根据之前的公式,我们可以得到:
E [ x ∣ y ] = μ + Λ − 1 A T ( L − 1 + A Λ − 1 A T ) − 1 ( y − A μ − b ) \mathbb{E}[x|y]=\mu+\Lambda^{-1}A^T(L^{-1}+A\Lambda^{-1}A^T)^{-1}(y-A\mu-b) E[xy]=μ+Λ1AT(L1+AΛ1AT)1(yAμb)

V a r [ x ∣ y ] = Λ − 1 − Λ − 1 A T ( L − 1 + A Λ − 1 A T ) − 1 A Λ − 1 Var[x|y]=\Lambda^{-1}-\Lambda^{-1}A^T(L^{-1}+A\Lambda^{-1}A^T)^{-1}A\Lambda^{-1} Var[xy]=Λ1Λ1AT(L1+AΛ1AT)1AΛ1

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wujiekd

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值