SLAM中的泰勒展开

概述

泰勒展开/泰勒级数表示用无限个项相加表示一个函数,这些相加的项由函数在某一点的导数求得

定义

对于一个以实数为变量的函数 f ( x ) f(x) f(x),如果它对变量 x x x无穷可导,则函数在实数 a a a领域上可以做如下泰勒展开:
f ( x ) = ∑ n = 0 ∞ f ( n ) ( a ) n ! ( x − a ) n = f ( a ) + ( x − a ) f 1 ( a ) + ( x − a ) 2 f 2 ( a ) ⋯ ( x − a ) n f n ( a ) ∀ x f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n !}(x-a)^{n}=f(a)+(x-a)f^{1}(a)+(x-a)^{2}f^{2}(a)\cdots(x-a)^{n}f^{n}(a)\quad \forall x f(x)=n=0n!f(n)(a)(xa)n=f(a)+(xa)f1(a)+(xa)2f2(a)(xa)nfn(a)x
其中 n ! n! n! n n n的阶乘, f ( n ) ( a ) {f^{(n)}(a)} f(n)(a)表示函数 f f f在实数 a a a处的 n n n阶导数

SLAM中常用的泰勒级数

指数函数
e x = ∑ n = 0 ∞ x n n ! = 1 + x + x 2 2 ! + x 3 3 ! + ⋯ + x n n ! + ⋯ ∀ x e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n !}=1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\cdots+\frac{x^{n}}{n !}+\cdots \quad \forall x ex=n=0n!xn=1+x+2!x2+3!x3++n!xn+x
三角函数
sin ⁡ x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1 = x − x 3 3 ! + x 5 5 ! − ⋯ ∀ x cos ⁡ x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n ) ! x 2 n = 1 − x 2 2 ! + x 4 4 ! − ⋯ ∀ x \begin{aligned} &\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) !} x^{2 n+1}=x-\frac{x^{3}}{3 !}+\frac{x^{5}}{5 !}-\cdots \quad \forall x\\ &\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n) !} x^{2 n}=1-\frac{x^{2}}{2 !}+\frac{x^{4}}{4 !}-\cdots \quad \forall x \end{aligned} sinx=n=0(2n+1)!(1)nx2n+1=x3!x3+5!x5xcosx=n=0(2n)!(1)nx2n=12!x2+4!x4x

多元泰勒展开

雅可比矩阵:

假设某函数 f : R n → R m \mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} f:RnRm x ∈ R n \mathbf{x} \in \mathbb{R}^n xRn映射到向量 f ( x ) ∈ R m \mathbf{f}(\mathbf{x}) \in \mathbb{R}^m f(x)Rm的函数,这个函数由m个上述的实函数组成:

R n \mathbb{R}^n Rn表示 n n n维的欧式空间

f = [ f 1 ( x 1 , ⋯   , x n ) f 2 ( x 1 , ⋯   , x n ) ⋮ y n ( x 1 , ⋯   , x n ) ] \mathbf{f}=\left[\begin{array}{c} f_{1}\left(x_{1}, \cdots, x_{n}\right) \\ f_{2}\left(x_{1}, \cdots, x_{n}\right) \\ \vdots \\ y_{n}\left(x_{1}, \cdots, x_{n}\right) \end{array}\right] f=f1(x1,,xn)f2(x1,,xn)yn(x1,,xn)

此函数 f \mathbf{f} f的雅可比矩阵 J J J m × n m×n m×n 的矩阵,一般由以下方式定义:
J = [ ∂ f ∂ x 1 ⋯ ∂ f ∂ x n ] = [ ∂ f 1 ∂ x 1 ⋯ ∂ f 1 ∂ x n ⋮ ⋱ ⋮ ∂ f m ∂ x 1 ⋯ ∂ f m ∂ x n ] J=\left[\begin{array}{ccc} \frac{\partial \mathbf{f}}{\partial x_{1}} & \cdots & \frac{\partial \mathbf{f}}{\partial x_{n}} \end{array}\right]=\left[\begin{array}{ccc} \frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}} \end{array}\right] J=[x1fxnf]=x1f1x1fmxnf1xnfm
由上可知,一个实函数 f : R n → R 1 \mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{1} f:RnR1的雅可比矩阵是一个行向量,正如下面的二元函数示例所示,这也是SLAM优化问题中最常用的雅克比矩阵形式,后面的海塞矩阵也是采用的 f : R n → R 1 \mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{1} f:RnR1函数。

海塞矩阵:

假设某函数 f : R n → R 1 \mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{1} f:RnR1,也就是一个实函数 f ( x 1 , x 2 , ⋯   , x n ) f\left(x_{1}, x_{2}, \cdots, x_{n}\right) f(x1,x2,,xn),此函数的海塞矩阵 H H H 是 是 n×n$的对称矩阵
H = [ ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 1 ∂ x 2 ⋯ ∂ 2 f ∂ x 1 ∂ x n ∂ 2 f ∂ x 2 ∂ x 1 ∂ 2 f ∂ x 2 2 ⋯ ∂ 2 f ∂ x 2 ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ 2 f ∂ x n ∂ x 1 ∂ 2 f ∂ x n ∂ x 2 ⋯ ∂ 2 f ∂ x n 2 ] H=\left[\begin{array}{cccc} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{array}\right] H=x122fx2x12fxnx12fx1x22fx222fxnx22fx1xn2fx2xn2fxn22f
二元函数示例

例如二元函数 f ( x , y ) f(x,y) f(x,y)是关于实数变量 x x x y y y的函数,函数在 ( x k , y k ) (x_{k}, y_{k}) (xk,yk)处的领域可以做如下的泰勒展开:
f ( x , y ) = f ( x k , y k ) + ( x − x k ) f x 1 ( x k , y k ) + ( y − y k ) f y 1 ( x k , y k ) + 1 2 ! ( x − x k ) 2 f x x 2 ( x k , y k ) + 1 2 ! ( x − x k ) ( y − y k ) f x y 2 ( x k , y k ) + 1 2 ! ( x − x k ) ( y − y k ) f y x 2 ( x k , y k ) + 1 2 ! ( y − y k ) 2 f y y 2 ( x k , y k ) + o n \begin{gathered} f(x, y)=f\left(x_{k}, y_{k}\right)+\left(x-x_{k}\right) f_{x}^{1}\left(x_{k}, y_{k}\right)+\left(y-y_{k}\right) f_{y}^{1}\left(x_{k}, y_{k}\right) \\ +\frac{1}{2 !}\left(x-x_{k}\right)^{2} f_{x x}^{2}\left(x_{k}, y_{k}\right)+\frac{1}{2 !}\left(x-x_{k}\right)\left(y-y_{k}\right) f_{x y}^{2}\left(x_{k}, y_{k}\right) \\ +\frac{1}{2 !}\left(x-x_{k}\right)\left(y-y_{k}\right) f_{y x}^{2}\left(x_{k}, y_{k}\right)+\frac{1}{2 !}\left(y-y_{k}\right)^{2} f_{y y}^{2}\left(x_{k}, y_{k}\right) \\ +o^{n} \end{gathered} f(x,y)=f(xk,yk)+(xxk)fx1(xk,yk)+(yyk)fy1(xk,yk)+2!1(xxk)2fxx2(xk,yk)+2!1(xxk)(yyk)fxy2(xk,yk)+2!1(xxk)(yyk)fyx2(xk,yk)+2!1(yyk)2fyy2(xk,yk)+on
其中:

  • f x 1 ( x k , y k ) f_{x}^{1}\left(x_{k}, y_{k}\right) fx1(xk,yk)表示 f f f ( x k , y k ) (x_{k}, y_{k}) (xk,yk)处关于 x x x的一阶导数,即 f x 1 ( x k , y k ) = ∂ f ∂ x f_{x}^{1}\left(x_{k}, y_{k}\right)=\frac{\partial f}{\partial x} fx1(xk,yk)=xf
  • f y 1 ( x k , y k ) f_{y}^{1}\left(x_{k}, y_{k}\right) fy1(xk,yk)表示 f f f ( x k , y k ) (x_{k}, y_{k}) (xk,yk)处关于 y y y的一阶导数,即 f y 1 ( x k , y k ) = ∂ f ∂ y f_{y}^{1}\left(x_{k}, y_{k}\right)=\frac{\partial f}{\partial y} fy1(xk,yk)=yf
  • f x x 2 ( x k , y k ) f_{x x}^{2}\left(x_{k}, y_{k}\right) fxx2(xk,yk)表示 f f f ( x k , y k ) (x_{k}, y_{k}) (xk,yk)处关于 x x x的二阶导数,即 f x x 2 ( x k , y k ) = ∂ 2 f ∂ x 2 f_{x x}^{2}\left(x_{k}, y_{k}\right)=\frac{\partial^{2} f}{\partial x^{2}} fxx2(xk,yk)=x22f
  • f x y 2 ( x k , y k ) f_{x y}^{2}\left(x_{k}, y_{k}\right) fxy2(xk,yk)表示 f f f ( x k , y k ) (x_{k}, y_{k}) (xk,yk)处分别关于 x x x y y y的二阶导数,即 f x y 2 ( x k , y k ) = ∂ 2 f ∂ x ∂ y f_{x y}^{2}\left(x_{k}, y_{k}\right)=\frac{\partial^{2} f}{\partial x \partial y} fxy2(xk,yk)=xy2f
  • f y x 2 ( x k , y k ) f_{y x}^{2}\left(x_{k}, y_{k}\right) fyx2(xk,yk)表示 f f f ( x k , y k ) (x_{k}, y_{k}) (xk,yk)处分别关于 y y y x x x的二阶导数,即 f y x 2 ( x k , y k ) = ∂ 2 f ∂ y ∂ x f_{y x}^{2}\left(x_{k}, y_{k}\right)=\frac{\partial^{2} f}{\partial y \partial x} fyx2(xk,yk)=yx2f
  • f y y 2 ( x k , y k ) f_{y y}^{2}\left(x_{k}, y_{k}\right) fyy2(xk,yk)表示 f f f ( x k , y k ) (x_{k}, y_{k}) (xk,yk)处关于 y y y的二阶导数,即 f y y 2 ( x k , y k ) = ∂ 2 f ∂ y 2 f_{y y}^{2}\left(x_{k}, y_{k}\right)=\frac{\partial^{2} f}{\partial y^{2}} fyy2(xk,yk)=y22f
  • o n o^{n} on表示三次项往上的余项,对于多元展开一般最多展开到二次项。

Δ x 1 = x − x k , Δ x 2 = y − y k , Δ x = [ Δ x 1 Δ x 2 ] \Delta x_{1}=x-x_{k}, \Delta x_{2}=y-y_{k},\Delta x=\left[\begin{array}{l} \Delta x_{1} \\ \Delta x_{2} \end{array}\right] Δx1=xxk,Δx2=yyk,Δx=[Δx1Δx2]

将上式写为矩阵的形式:
f ( x ) = f ( x k , y k ) + ∇ f ( x k , y k ) T Δ x + 1 2 Δ x T H ( x k , y k ) Δ x + ⋯ f(x)=f\left(x_{k}, y_{k}\right)+\nabla f\left(x_{k}, y_{k}\right)^{\mathrm{T}} \Delta x+\frac{1}{2} \Delta x^{\mathrm{T}} H\left(x_{k}, y_{k}\right) \Delta x+\cdots f(x)=f(xk,yk)+f(xk,yk)TΔx+21ΔxTH(xk,yk)Δx+
其中 ∇ f ( x k , y k ) \nabla f\left(x_{k}, y_{k}\right) f(xk,yk)是函数 f ( x , y ) f(x,y) f(x,y) ( x k , y k ) (x_{k}, y_{k}) (xk,yk)处的梯度:
∇ f ( x k , y k ) = [ ∂ f ∂ x ∂ f ∂ y ] ( x k , y k ) \nabla f\left(x_{k}, y_{k}\right)=\left[\begin{array}{l} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{array}\right]_{(x_{k}, y_{k})} f(xk,yk)=[xfyf](xk,yk)

梯度的转置其实就是雅可比矩阵, ∇ f ( x k , y k ) T = J ( x k , y k ) \nabla f\left(x_{k}, y_{k}\right)^{\mathrm{T}}=J\left(x_{k}, y_{k}\right) f(xk,yk)T=J(xk,yk)

另外, H ( x k , y k ) H\left(x_{k}, y_{k}\right) H(xk,yk)
H ( x k , y k ) = [ ∂ 2 f ∂ x 2 ∂ 2 f ∂ x ∂ y ∂ 2 f ∂ y ∂ x ∂ 2 f ∂ y 2 ] ( x k , y k ) H\left(x_{k}, y_{k}\right)=\left[\begin{array}{cc} \frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} \\ \frac{\partial^{2} f}{\partial y \partial x} & \frac{\partial^{2} f}{\partial y^{2}} \end{array}\right]_{(x_{k}, y_{k})} H(xk,yk)=[x22fyx2fxy2fy22f](xk,yk)
也就是海塞矩阵。

总结:

综上所述,对于一个多元函数 f ( x ) , x = [ x 1 x 2 ⋮ x n ] f(\mathbf{x}),\mathbf{x}=\left[\begin{array}{c} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{array}\right] f(x),x=x1x2xn,在 x 0 = = [ x 10 x 20 ⋮ x n 0 ] \mathbf{x_0}==\left[\begin{array}{c} x_{10} \\ x_{20} \\ \vdots \\ x_{n0} \end{array}\right] x0==x10x20xn0处的泰勒展开式为:
f ( x ) , = f ( x 0 ) + J ( x 0 ) Δ x + 1 2 Δ x T H ( x 0 ) Δ x + ⋯ f(\mathbf{x}),=f\left(\mathbf{x_0}\right)+J(\mathbf{x_0}) \Delta \mathbf{x}+\frac{1}{2} \Delta \mathbf{x}^{\mathrm{T}} H\left(\mathbf{x_0}\right) \Delta \mathbf{x}+\cdots f(x),=f(x0)+J(x0)Δx+21ΔxTH(x0)Δx+
其中:

Δ x = [ Δ x 1 Δ x 2 ⋮ Δ x n ] = [ x 1 − x 10 x 2 − x 20 ⋮ x n − x n 0 ] \Delta\mathbf{x}=\left[\begin{array}{c} \Delta x_{1} \\ \Delta x_{2} \\ \vdots \\ \Delta x_{n} \end{array}\right]=\left[\begin{array}{c} x_{1}-x_{10} \\ x_{2}-x_{20} \\ \vdots \\ x_{n}-x_{n0} \end{array}\right] Δx=Δx1Δx2Δxn=x1x10x2x20xnxn0 J ( x 0 ) = [ ∂ f ∂ x 1 ⋯ ∂ f ∂ x n ] x 0 J(\mathbf{x_0})=\left[\begin{array}{ccc} \frac{\partial f}{\partial x_{1}} & \cdots & \frac{\partial f}{\partial x_{n}} \end{array}\right]_\mathbf{x_0} J(x0)=[x1fxnf]x0 H ( x 0 ) = [ ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 1 ∂ x 2 ⋯ ∂ 2 f ∂ x 1 ∂ x n ∂ 2 f ∂ x 2 ∂ x 1 ∂ 2 f ∂ x 2 2 ⋯ ∂ 2 f ∂ x 2 ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ 2 f ∂ x n ∂ x 1 ∂ 2 f ∂ x n ∂ x 2 ⋯ ∂ 2 f ∂ x n 2 ] x 0 H(\mathbf{x_0})=\left[\begin{array}{cccc} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{array}\right]_{\mathbf{x_0}} H(x0)=x122fx2x12fxnx12fx1x22fx222fxnx22fx1xn2fx2xn2fxn22fx0

泰勒展开在SLAM中的应用

推导罗德里格斯公式

任意矩阵 A \boldsymbol{A} A的指数映射也可以像指数函数的泰勒级数一样进行泰勒展开:
exp ⁡ ( A ) = ∑ n = 0 ∞ 1 n ! A n \exp (\boldsymbol{A})=\sum_{n=0}^{\infty} \frac{1}{n !} \boldsymbol{A}^{n} exp(A)=n=0n!1An
所以SO(3)上的指数映射可以写为:
R = exp ⁡ ( ϕ ∧ ) = exp ⁡ ( θ a ∧ ) = ∑ n = 0 ∞ 1 n ! ( θ a ∧ ) n R=\exp \left(\phi^{\wedge}\right)=\exp \left(\theta \boldsymbol{a}^{\wedge}\right)=\sum_{n=0}^{\infty} \frac{1}{n !}\left(\theta \boldsymbol{a}^{\wedge}\right)^{n} R=exp(ϕ)=exp(θa)=n=0n!1(θa)n
对于单位向量的反对称矩阵有如下性质:
a ∧ a ∧ = [ − a 2 2 − a 3 2 a 1 a 2 a 1 a 3 a 1 a 2 − a 1 2 − a 3 2 a 2 a 3 a 1 a 3 a 2 a 3 − a 1 2 − a 2 2 ] = a a T − I \boldsymbol{a}^{\wedge} \boldsymbol{a}^{\wedge}=\left[\begin{array}{ccc} -a_{2}^{2}-a_{3}^{2} & a_{1} a_{2} & a_{1} a_{3} \\ a_{1} a_{2} & -a_{1}^{2}-a_{3}^{2} & a_{2} a_{3} \\ a_{1} a_{3} & a_{2} a_{3} & -a_{1}^{2}-a_{2}^{2} \end{array}\right]=\boldsymbol{a} \boldsymbol{a}^{\mathrm{T}}-\boldsymbol{I} aa=a22a32a1a2a1a3a1a2a12a32a2a3a1a3a2a3a12a22=aaTI

a ∧ a ∧ a ∧ = a ∧ ( a a T − I ) = − a ∧ \boldsymbol{a}^{\wedge} \boldsymbol{a}^{\wedge} \boldsymbol{a}^{\wedge}=\boldsymbol{a}^{\wedge}\left(\boldsymbol{a} \boldsymbol{a}^{\mathrm{T}}-\boldsymbol{I}\right)=-\boldsymbol{a}^{\wedge} aaa=a(aaTI)=a

所以
R = ∑ n = 0 ∞ 1 n ! ( θ a ∧ ) n = I + θ a ∧ + 1 2 ! θ 2 a ∧ a ∧ + 1 3 ! θ 3 a ∧ a ∧ a ∧ + 1 4 ! θ 4 ( a ∧ ) 4 + ⋯ = a a T − a ∧ a ∧ + θ a ∧ + 1 2 ! θ 2 a ∧ a ∧ − 1 3 ! θ 3 a ∧ − 1 4 ! θ 4 ( a ∧ ) 2 + ⋯ = a T + ( θ − 1 3 ! θ 3 + 1 5 ! θ 5 − ⋯   ) ⏟ sin ⁡ θ a ∧ − ( 1 − 1 2 ! θ 2 + 1 4 ! θ 4 − ⋯   ) ⏟ cos ⁡ θ a ∧ a ∧ = a ∧ a ∧ + I + sin ⁡ θ a ∧ − cos ⁡ θ a ∧ a ∧ = ( 1 − cos ⁡ θ ) a ∧ a ∧ + I + sin ⁡ θ a ∧ = cos ⁡ θ I + ( 1 − cos ⁡ θ ) a a T + sin ⁡ θ a ∧ . \begin{aligned} &R=\sum_{n=0}^{\infty} \frac{1}{n !}\left(\theta \boldsymbol{a}^{\wedge}\right)^{n}\\ &=\boldsymbol{I}+\theta \boldsymbol{a}^{\wedge}+\frac{1}{2 !} \theta^{2} \boldsymbol{a}^{\wedge} \boldsymbol{a}^{\wedge}+\frac{1}{3 !} \theta^{3} \boldsymbol{a}^{\wedge} \boldsymbol{a}^{\wedge} \boldsymbol{a}^{\wedge}+\frac{1}{4 !} \theta^{4}\left(\boldsymbol{a}^{\wedge}\right)^{4}+\cdots \\ &=\boldsymbol{a} \boldsymbol{a}^{\mathrm{T}}-\boldsymbol{a}^{\wedge} \boldsymbol{a}^{\wedge}+\theta \boldsymbol{a}^{\wedge}+\frac{1}{2 !} \theta^{2} \boldsymbol{a}^{\wedge} \boldsymbol{a}^{\wedge}-\frac{1}{3 !} \theta^{3} \boldsymbol{a}^{\wedge}-\frac{1}{4 !} \theta^{4}\left(\boldsymbol{a}^{\wedge}\right)^{2}+\cdots \\ &=\boldsymbol{a}^{\mathrm{T}}+\underbrace{\left(\theta-\frac{1}{3 !} \theta^{3}+\frac{1}{5 !} \theta^{5}-\cdots\right)}_{\sin \theta} \boldsymbol{a}^{\wedge}-\underbrace{\left(1-\frac{1}{2 !} \theta^{2}+\frac{1}{4 !} \theta^{4}-\cdots\right)}_{\cos \theta} \boldsymbol{a}^{\wedge} \boldsymbol{a}^{\wedge} \\ &=\boldsymbol{a}^{\wedge} \boldsymbol{a}^{\wedge}+\boldsymbol{I}+\sin \theta \boldsymbol{a}^{\wedge}-\cos \theta \boldsymbol{a}^{\wedge} \boldsymbol{a}^{\wedge} \\ &=(1-\cos \theta) \boldsymbol{a}^{\wedge} \boldsymbol{a}^{\wedge}+\boldsymbol{I}+\sin \theta \boldsymbol{a}^{\wedge} \\ &=\cos \theta \boldsymbol{I}+(1-\cos \theta) \boldsymbol{a} \boldsymbol{a}^{\mathrm{T}}+\sin \theta \boldsymbol{a}^{\wedge} . \end{aligned} R=n=0n!1(θa)n=I+θa+2!1θ2aa+3!1θ3aaa+4!1θ4(a)4+=aaTaa+θa+2!1θ2aa3!1θ3a4!1θ4(a)2+=aT+sinθ (θ3!1θ3+5!1θ5)acosθ (12!1θ2+4!1θ4)aa=aa+I+sinθacosθaa=(1cosθ)aa+I+sinθa=cosθI+(1cosθ)aaT+sinθa.
罗德里格斯公式得证。

约等式 exp ⁡ ( A ) ≈ I + A \exp (\boldsymbol{A})\approx I+\boldsymbol{A} exp(A)I+A以及 exp ⁡ ( − A ) ≈ I − A \exp (-\boldsymbol{A})\approx I-\boldsymbol{A} exp(A)IA

这个约等式是李群李代数中经常用到的约等式,只不过李群李代数中的 A \boldsymbol{A} A通常是反对称矩阵,这个约等式就是是上面矩阵指数的截断泰勒展开
exp ⁡ ( A ) = ∑ n = 0 ∞ 1 n ! A n ≈ I + A \exp (\boldsymbol{A})=\sum_{n=0}^{\infty} \frac{1}{n !} \boldsymbol{A}^{n}\approx I+\boldsymbol{A} exp(A)=n=0n!1AnI+A

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值