矢量导数——角速度与矢量的叉乘
原创不易,路过的各位大佬请点个赞
矢量叉乘,向量外积
1. 定理
矢量的导数为角速度叉乘以该适量。
这也是角速度的定义。
角速度在一般意义上是一个二阶张量,不过由于这个张量满足某些约束条件,自由的分量个数恰好变成了3个,所以正好可以拼凑成一个三分量矢量。
刚体绕定轴旋转时,角速度矢量的方向垂直于旋转平面,且按右手螺旋法则确定
证明
定义矢量在本体坐标系表示为
r
a
r_a
ra,在旋转坐标系的表示为
r
b
r_b
rb,两个坐标系之间的旋转矩阵为R。则存在
r
a
=
R
r
b
r_a=Rr_b
ra=Rrb
两边求导得到
r
˙
a
=
R
˙
r
b
+
R
r
˙
b
=
R
r
˙
b
+
R
˙
R
−
1
r
a
\begin{aligned} \dot{r}_a&=\dot{R}r_b + R\dot{r}_b\\ &= R\dot{r}_b + \dot{R}R^{-1}r_a \end{aligned}
r˙a=R˙rb+Rr˙b=Rr˙b+R˙R−1ra
由于坐标旋转矩阵为酉矩阵,即
R
−
1
=
R
T
R^{-1}=R^T
R−1=RT,则
r
˙
a
=
R
r
˙
b
+
R
˙
R
T
r
a
\begin{aligned} \dot{r}_a&= R\dot{r}_b + \dot{R}R^Tr_a \end{aligned}
r˙a=Rr˙b+R˙RTra
定义相对倒数:
R
r
˙
b
=
d
d
t
r
a
R\dot{r}_b=\frac{d}{dt}r_a
Rr˙b=dtdra
表示该矢量在旋转坐标系中的坐标相对时间变化率转到本体坐标系。
引入角速度张量
R
˙
R
T
=
Ω
\dot{R}R^T=\Omega
R˙RT=Ω
则可以得到
Ω
T
=
R
R
˙
T
Ω
+
Ω
T
=
d
d
t
(
R
R
T
)
=
d
d
t
(
I
)
=
0
\begin{aligned} &\Omega^T=R\dot{R}^T\\ &\Omega + \Omega^T=\frac{d}{dt}(RR^T)=\frac{d}{dt}(I)=0 \end{aligned}
ΩT=RR˙TΩ+ΩT=dtd(RRT)=dtd(I)=0
其中
R
R
T
RR^T
RRT基于酉矩阵性质。
同时可以得到
Ω
=
−
Ω
T
\Omega=-\Omega^T
Ω=−ΩT
满足这个条件的张量就是所谓的“斜对称矩阵”,在这个约束条件下,角速度张量可以写成
Ω
=
[
0
−
ω
y
ω
z
ω
y
0
−
ω
x
−
ω
z
ω
x
0
]
\Omega=\begin{bmatrix}0&-\omega_y&\omega_z\\\omega_y&0&-\omega_x\\ -\omega_z &\omega_x &0\end{bmatrix}
Ω=⎣⎡0ωy−ωz−ωy0ωxωz−ωx0⎦⎤
如果把旋转坐标系看成是“固连”在刚体上的坐标系,那么这个定义就是刚体角速度的定义。
现在定义角速度矢量
ω
=
[
ω
x
,
ω
y
,
ω
z
]
\omega=[\omega_x,\omega_y, \omega_z]
ω=[ωx,ωy,ωz]
则
Ω
r
a
=
ω
×
r
a
\Omega r_a = \omega\times r_a
Ωra=ω×ra
证明结论部分
因此可以得到
r
˙
a
=
d
d
t
r
a
+
R
˙
R
T
r
a
=
d
d
t
r
a
+
ω
×
r
a
\begin{aligned} \dot{r}_a&=\frac{d}{dt}r_a + \dot{R}R^Tr_a\\ &=\frac{d}{dt}r_a + \omega\times r_a \end{aligned}
r˙a=dtdra+R˙RTra=dtdra+ω×ra
如果这个矢量相对于旋转坐标系是固定的(比如刚体上固定点在固连坐标系中的位置矢量),那么“相对导数”为零,这种情况下就有
r
˙
a
=
ω
×
r
a
\begin{aligned} \dot{r}_a= \omega\times r_a \end{aligned}
r˙a=ω×ra
原创不易,路过的各位大佬请点个赞