数字化供应链是以客户为中心、数据驱动的网状协同体系,涵盖数码化(模拟转数字)、数字化(业务模式转型)和数字化转型(全流程变革)三阶段演进。供应链数字化转型需以战略为引领、技术为引擎、生态为支撑,通过“战略-架构-方法-案例”四维联动,实现从成本中心到价值中心的跃迁。
1. 数字化转型战略解读
1.1 数字化供应链概念溯源
1.1.1 数字化概念演进
-
数字化概念从数码化起步,即模拟形式向数字形式转变,如将纸质文档扫描成电子文档,仅形式转换,无实物变化。
-
数字化进一步发展,强调交互、通信、业务功能和商业模式的数字化,实现 IT 和 OT 集成,如全渠道客户服务、互联网平台等。
1.1.2 新工业发展阶段特征
-
电脑化 / 信息化阶段,企业开始使用电脑处理业务数据,实现办公自动化。
-
电脑化 + 互联系统阶段,企业内部系统实现互联互通,数据共享,提高协同效率。
-
数字化转型阶段,企业整体变革,从端到端成为客户导向的智慧企业,具备业务可视化、透明化、预测性、自我适应性等特点。
1.2 数字化转型战略思维
1.2.1 内外因驱动转型
-
内因方面,企业商业模式向数字化转型,如制造服务化、新零售模式等,以满足超个性化、敏捷响应、高质服务等市场需求,降低设计、工程、供应链管理成本,缩短市场投放时间,提升竞争力。
-
外因方面,数字经济、全球化、工业 4.0 等推动供应链数字化转型,如新兴技术驱动供应链变革,国家政策保障数字化转型,提高国际竞争力。
1.2.2 战略思维关键要素
-
数字化战略是转型驱动器,技术创新是加速器,企业需确立数字化战略,将技术战略融入其中。
-
供应链领导者需掌握五大战略趋势:由 CEO 领导转型战略、建立明确数字战略、明确变革范围和目标、投资数字人才、培养数字化转型文化。
-
价值驱动供应链数字化转型,通过敏捷团队、供应链控制塔、人工智能等技术实现成本优化、风险管理等。
2. 数字化转型架构设计
2.1 参考架构与策略
2.1.1 架构变革方向
-
从线性供应链向数字供应网络转变,通过实时数据提升决策透明度和协同能力。
-
从“一刀切”管理向精细化管理变革,根据场景和案例设定细分策略,满足不同客户需求。
2.1.2 参考架构构成
-
数字化商业模式:通过模块化、分析等手段,实现敏捷供应链管理,满足市场需求。
-
数字化供应链:涵盖数字化计划、采购、生产、运营、服务等环节,以数据为核心,实现自动化和智能化。
-
数字化供应网络新基建:包括互联供应网络、数据、控制塔、数字孪生等,提升协同和可视化能力。
-
数字化供应链管理生态系统框架:以供应链控制塔为核心,连接外部生态系统、数字化计划、运营生态链等,实现数据驱动的决策和优化。
2.2 各环节数字化转型
基于数字主线和数字孪生的智能制造生态系统:数字主线贯穿整个产品链和资产链。数字孪生将数据进行各种分析,产生对设计、仿真、生产的
洞察,为产品链提供各种决策,从而优化整个生产过程。
此外,PLM(产品生命周期管理)作为贯穿产品整个生命周期的管理信息软件工具,它与SCM(供应链管理)深度融合也将促进并赋能双方的数 字化转型。
2.2.1 计划环节转型
-
数字化供应链计划涵盖七个维度,如物联网传感器数据实时响应变化,从 S&OP 到 IBP 等技术应用,提升计划的精准度和灵活性。
2.2.2 采购环节转型
-
数字化采购框架通过人工智能、物联网、机器人流程自动化等技术,实现采购过程的高效协作与自动化,降低合规风险,打造价值创造中心。
2.2.3 生产 / 制造环节转型
-
数字主线和数字孪生助力生产制造数字化转型,贯穿产品链和资产链,为设计、仿真、生产提供决策洞察,优化生产过程。PLM 与 SCM 深度融合,赋能双方数字化转型。
2.2.4 运营环节转型
-
制定供应链运营转型战略需考虑五大要素:智能数字化供应链运营生态系统、数字创新人才、智能数字技术应用、数据洞察、云赋能。中储智运的智能物流服务平台和供应链数据管理案例展示了运营转型的实际应用,通过技术赋能实现降本增效。
2.2.5 逆向供应链变革
-
逆向供应链涵盖产品交付后的维护、退货、再制造、原材料回收等活动。在新兴技术推动下,其数字化转型成为趋势,如 SAP 逆向物流软件管理系统、Optoro 智能逆向供应链物流平台等,助力经济可持续发展。
2.3 数字化供应链控制塔
-
作为供应链管理 / 控制中心,确保端到端流程和里程碑的可见性和可控性,实现与供应商和合作伙伴的全面实时协作。埃森哲和普华永道提出的参考架构和生态架构,为构建控制塔提供了重要参考。
3. 数字化转型方法论
3.1 数字意识与转型路径
3.1.1 数字意识框架
-
国际贸易协会和德勤开发的供应链数字意识指数(DCI)框架,包含四个意识水平层次(从无数字意识到成熟的数字意识)和五个数字意识类别(创新 / 技术、数字化人才、客户参与度、工作环境、领导力),帮助企业评估数字化思维和转型进展。
3.1.2 转型方法论框架
-
基于数字意识框架的转型方法论框架,包括评估数字意识现状、制定提升规划、实施转型、持续改进等步骤。关键举措涵盖数字意识评估、战略规划、投资数字技术、发展生态系统等,通过不断迭代实现供应链数字化转型。
3.1.3 转型执行框架
-
供应链数字化转型执行框架以客户为中心,包括需求、团队、技术、风险四个管理。技术战略执行框架以战略目标为核心,连接认知、投注、评估、改进等步骤,形成闭环,加速数字化转型。
3.2 转数字化转型度量
3.2.1 度量指标体系
-
基本数字化供应链的度量指标涵盖需求、人员、技术、风险四个方面,如数字化供应链行动带来的收入变化、人员总成本、技术总支出、风险价值变动等。这些指标推动公司行为,评估转型效果。
3.2.2 成熟度进阶模型
-
数字化供应链转型路径过程成熟度进阶模型结合绩效度量指标和关键领域成熟度,为公司提供全面衡量转型进展的方法。通过重复和改进绩效结果,适应商业场景变化,实现数字化转型的持续优化。
3.2.3 指标使用指南
-
供应链数字化转型指标的路线图和方案指南为实施度量提供指导。包括完成转换成熟度评估、分析评估结果、制定战略、选择绩效指标、分配指标等步骤,确保度量指标的有效应用和转型的持续推进。
4. 数字化转型实践案例
4.1 联想数字化供应链
4.1.1 “START”方法论
-
联想的“START”数字化转型方法论包含制定数字化战略、构建技术赋能中心、实现业务智能运营、重塑业务模式、建设转型保障体系等环节,以体系化加速企业数字化转型。该方法论引导联想供应链的数字化转型,提升竞争力。
4.1.2 智能计划及排程
-
联想智能计划及排程解决方案借助全球供应链体系和数据优势,结合机器学习算法,实现高集成、自动化的计划过程。通过优化算法、假设模拟等手段,提升需求和供应管理的灵活性和效率,确保订单交付和资源最大化利用。
4.2 美的数智化供应链
4.2.1 数字战略演进
-
美的数字战略从 2012 年的“632”到 2016 年的数字化 2.0,再到 2019 年的数字美的战略升级,逐步实现全面数字化、智能化、生态化。通过软件化、数字化、自动化等手段,推动供应链数字化重塑,实现智能化运营。
4.2.2 数智化供应链架构
-
美的数智化供应链架构与数字化业务架构融合,支撑全价值链卓越运营。底座由数字化运营的决策和基础层构成,支撑生产制造与供应链管理及物流融合的数字化运营体系,提升供应链效率和协同能力。
4.3 京东智慧化数字供应链
4.3.1 智慧供应链物流体系
-
京东针对高时效要求的六大供应链网络,创建了智慧供应链物流体系,涵盖智能分析决策、智慧化布局、数字化运营、自动化作业四大层次,提升供应链的智能化水平和运营效率。
4.3.2 无界智能供应链架构
-
京东无界智能供应链架构顶层包括八大应用,核心是连接四个平台的供应链控制塔。八大应用由八大数字技术支撑,如计划管理、选品管理、供应链协同、价格管理等,实现供应链的智能化管理和优化。
4.4 菜鸟数智化供应链
4.4.1 “一横两纵”战略
-
菜鸟的“一横两纵”数智化转型战略,“一横”指行业数字化升级,利用 IoT、智能分单等技术推动行业转型;“两纵”指围绕新零售的智慧供应链能力和全球供应链能力,支撑阿里巴巴新零售生态。
4.4.2 数智化供应链架构
-
菜鸟采用人工智能、大数据、物联网等技术构建数智化供应链架构,涵盖业务应用、数据引擎、数据中台、基础设施等层次。通过数据驱动实现良品率分析、物流优化、个性化营销等功能,提升供应链的智能化和效率。
4.5 数字化逆向供应链案例
4.5.1 智能电池回收
-
美国 BatterySolutions 结合人与人工智能技术实现高精度电池分类;北美 Call2Recycle 提供电池回收解决方案;瑞典研究成果推动智能电池分类机器发展,提升逆向供应链的智能化水平。
4.5.2 逆向物流 4.0
-
通过产品中的传感器和存储数据,实现可追溯信息和材料质量文档获取。借助 AI 支持自动逆向物流流程,如 Oporto 平台利用大数据市场分析和智能配置系统,挖掘退货、过时产品和冗余库存的市场价值,实现逆向物流的智能化和价值最大化。
5. 精选100份数字化供应链相关参考资料(WORD+PPT+PDF)
PPT格式(69份)
WORD格式(6份)
PDF格式(29份)