常用拉普拉斯变换及其性质和证明

1. 基本函数的拉普拉斯变换

在这里插入图片描述

原函数 f ( t ) f(t) f(t)拉普拉斯变换 F ( s ) F(s) F(s)定义域
1 1 1 1 s \frac{1}{s} s1 s > 0 s > 0 s>0
t t t 1 s 2 \frac{1}{s^2} s21 s > 0 s > 0 s>0
t n   ( n 为整数 ) t^n \ (n \text{为整数}) tn (n为整数) n ! s n + 1 \frac{n!}{s^{n+1}} sn+1n! s > 0 s > 0 s>0
e a t e^{at} eat 1 s − a \frac{1}{s-a} sa1 s > a s > a s>a
t e a t t e^{at} teat 1 ( s − a ) 2 \frac{1}{(s-a)^2} (sa)21 s > a s > a s>a
t n e a t   ( n 为整数 ) t^n e^{at} \ (n \text{为整数}) tneat (n为整数) n ! ( s − a ) n + 1 \frac{n!}{(s-a)^{n+1}} (sa)n+1n! s > a s > a s>a
sin ⁡ ( ω t ) \sin(\omega t) sin(ωt) ω s 2 + ω 2 \frac{\omega}{s^2+\omega^2} s2+ω2ω s > 0 s > 0 s>0
cos ⁡ ( ω t ) \cos(\omega t) cos(ωt) s s 2 + ω 2 \frac{s}{s^2+\omega^2} s2+ω2s s > 0 s > 0 s>0
e a t sin ⁡ ( ω t ) e^{at}\sin(\omega t) eatsin(ωt) ω ( s − a ) 2 + ω 2 \frac{\omega}{(s-a)^2+\omega^2} (sa)2+ω2ω s > a s > a s>a
e a t cos ⁡ ( ω t ) e^{at}\cos(\omega t) eatcos(ωt) s − a ( s − a ) 2 + ω 2 \frac{s-a}{(s-a)^2+\omega^2} (sa)2+ω2sa s > a s > a s>a
δ ( t ) \delta(t) δ(t) 1 1 1 s > 0 s > 0 s>0
u ( t )   ( 单位阶跃函数 ) u(t) \ (\text{单位阶跃函数}) u(t) (单位阶跃函数) 1 s \frac{1}{s} s1 s > 0 s > 0 s>0

2. 常用性质

(1)线性性质

L { a f 1 ( t ) + b f 2 ( t ) } = a F 1 ( s ) + b F 2 ( s ) \mathcal{L}\{a f_1(t) + b f_2(t)\} = a F_1(s) + b F_2(s) L{af1(t)+bf2(t)}=aF1(s)+bF2(s)

(2)延时性质

f ( t ) → L F ( s ) f(t) \xrightarrow{\mathcal{L}} F(s) f(t)L F(s),则
f ( t − τ ) u ( t − τ ) → L e − τ s F ( s ) f(t-\tau)u(t-\tau) \xrightarrow{\mathcal{L}} e^{-\tau s}F(s) f(tτ)u(tτ)L eτsF(s)

(3)导数性质
  • f ′ ( t ) → L s F ( s ) − f ( 0 + ) f'(t) \xrightarrow{\mathcal{L}} sF(s) - f(0^+) f(t)L sF(s)f(0+)
  • f ′ ′ ( t ) → L s 2 F ( s ) − s f ( 0 + ) − f ′ ( 0 + ) f''(t) \xrightarrow{\mathcal{L}} s^2F(s) - sf(0^+) - f'(0^+) f′′(t)L s2F(s)sf(0+)f(0+)
(4)积分性质

∫ 0 t f ( τ ) d τ → L F ( s ) s \int_{0}^{t} f(\tau) d\tau \xrightarrow{\mathcal{L}} \frac{F(s)}{s} 0tf(τ)dτL sF(s)

(5)卷积性质

f 1 ( t ) f_1(t) f1(t) f 2 ( t ) f_2(t) f2(t) 的卷积定义为:
f 1 ( t ) ∗ f 2 ( t ) = ∫ 0 t f 1 ( τ ) f 2 ( t − τ ) d τ f_1(t) * f_2(t) = \int_{0}^{t} f_1(\tau)f_2(t-\tau) d\tau f1(t)f2(t)=0tf1(τ)f2(tτ)dτ
则拉普拉斯变换为:
L { f 1 ( t ) ∗ f 2 ( t ) } = F 1 ( s ) F 2 ( s ) \mathcal{L}\{f_1(t) * f_2(t)\} = F_1(s)F_2(s) L{f1(t)f2(t)}=F1(s)F2(s)

(6)频移性质

e a t f ( t ) → L F ( s − a ) e^{at}f(t) \xrightarrow{\mathcal{L}} F(s-a) eatf(t)L F(sa)

(7)初值与终值定理
  • 初值定理:
    f ( 0 + ) = lim ⁡ s → ∞ s F ( s ) f(0^+) = \lim_{s \to \infty} sF(s) f(0+)=slimsF(s)
  • 终值定理:
    f ( ∞ ) = lim ⁡ s → 0 s F ( s ) f(\infty) = \lim_{s \to 0} sF(s) f()=s0limsF(s)

3. 特殊函数的拉普拉斯变换

原函数 f ( t ) f(t) f(t)拉普拉斯变换 F ( s ) F(s) F(s)
矩形脉冲 ( u ( t ) − u ( t − T ) ) \text{矩形脉冲}(u(t) - u(t-T)) 矩形脉冲(u(t)u(tT)) 1 − e − T s s \frac{1 - e^{-Ts}}{s} s1eTs
t ⋅ u ( t ) t \cdot u(t) tu(t) 1 s 2 \frac{1}{s^2} s21
1 t   ( t > 0 ) \frac{1}{t} \ (t > 0) t1 (t>0) ln ⁡ ( s ) \ln(s) ln(s)

4. 一些基本证明

拉普拉斯变换的定义

L { f ( t ) } = F ( s ) = ∫ 0 ∞ f ( t ) e − s t   d t \mathcal{L}\{f(t)\} = F(s) = \int_{0}^{\infty} f(t) e^{-st} \, dt L{f(t)}=F(s)=0f(t)estdt

1. 线性性质证明

如果 f 1 ( t ) → L F 1 ( s ) f_1(t) \xrightarrow{\mathcal{L}} F_1(s) f1(t)L F1(s),且 f 2 ( t ) → L F 2 ( s ) f_2(t) \xrightarrow{\mathcal{L}} F_2(s) f2(t)L F2(s),则对于任意常数 a a a b b b
L { a f 1 ( t ) + b f 2 ( t ) } = ∫ 0 ∞ [ a f 1 ( t ) + b f 2 ( t ) ] e − s t   d t \mathcal{L}\{a f_1(t) + b f_2(t)\} = \int_{0}^{\infty} \left[ a f_1(t) + b f_2(t) \right] e^{-st} \, dt L{af1(t)+bf2(t)}=0[af1(t)+bf2(t)]estdt
将积分拆分:
= a ∫ 0 ∞ f 1 ( t ) e − s t   d t + b ∫ 0 ∞ f 2 ( t ) e − s t   d t = a \int_{0}^{\infty} f_1(t) e^{-st} \, dt + b \int_{0}^{\infty} f_2(t) e^{-st} \, dt =a0f1(t)estdt+b0f2(t)estdt
根据定义:
= a F 1 ( s ) + b F 2 ( s ) = a F_1(s) + b F_2(s) =aF1(s)+bF2(s)
因此,线性性质成立。

2. 延时性质证明

g ( t ) = f ( t − τ ) u ( t − τ ) g(t) = f(t-\tau)u(t-\tau) g(t)=f(tτ)u(tτ),其拉普拉斯变换为:
L { g ( t ) } = ∫ 0 ∞ g ( t ) e − s t   d t = ∫ 0 ∞ f ( t − τ ) u ( t − τ ) e − s t   d t \mathcal{L}\{g(t)\} = \int_{0}^{\infty} g(t) e^{-st} \, dt = \int_{0}^{\infty} f(t-\tau) u(t-\tau) e^{-st} \, dt L{g(t)}=0g(t)estdt=0f(tτ)u(tτ)estdt
因为 u ( t − τ ) = 0 u(t-\tau) = 0 u(tτ)=0 t < τ t < \tau t<τ,所以积分下限可以改为 τ \tau τ
= ∫ τ ∞ f ( t − τ ) e − s t   d t = \int_{\tau}^{\infty} f(t-\tau) e^{-st} \, dt =τf(tτ)estdt
t ′ = t − τ t' = t - \tau t=tτ,则 d t = d t ′ dt = dt' dt=dt,且当 t = τ t = \tau t=τ 时, t ′ = 0 t' = 0 t=0;当 t → ∞ t \to \infty t 时, t ′ → ∞ t' \to \infty t
= ∫ 0 ∞ f ( t ′ ) e − s ( t ′ + τ )   d t ′ = \int_{0}^{\infty} f(t') e^{-s(t'+\tau)} \, dt' =0f(t)es(t+τ)dt
e − s τ e^{-s\tau} esτ 提取出来:
= e − s τ ∫ 0 ∞ f ( t ′ ) e − s t ′   d t ′ = e^{-s\tau} \int_{0}^{\infty} f(t') e^{-st'} \, dt' =esτ0f(t)estdt
根据定义:
= e − s τ F ( s ) = e^{-s\tau} F(s) =esτF(s)
因此,延时性质成立。

3. 导数性质证明

f ′ ( t ) f'(t) f(t) 的拉普拉斯变换为:
L { f ′ ( t ) } = ∫ 0 ∞ f ′ ( t ) e − s t   d t \mathcal{L}\{f'(t)\} = \int_{0}^{\infty} f'(t) e^{-st} \, dt L{f(t)}=0f(t)estdt
f ( t ) e − s t f(t)e^{-st} f(t)est 使用分部积分:
u = e − s t u = e^{-st} u=est d v = f ′ ( t ) d t dv = f'(t)dt dv=f(t)dt,则 d u = − s e − s t d t du = -se^{-st}dt du=sestdt v = f ( t ) v = f(t) v=f(t)
∫ 0 ∞ f ′ ( t ) e − s t   d t = [ f ( t ) e − s t ] 0 ∞ − ∫ 0 ∞ f ( t ) ( − s e − s t )   d t \int_{0}^{\infty} f'(t) e^{-st} \, dt = \left[ f(t)e^{-st} \right]_{0}^{\infty} - \int_{0}^{\infty} f(t)(-se^{-st}) \, dt 0f(t)estdt=[f(t)est]00f(t)(sest)dt
边界条件:

  • t → ∞ t \to \infty t,若 f ( t ) f(t) f(t) 增长缓慢(指数衰减),则 f ( t ) e − s t → 0 f(t)e^{-st} \to 0 f(t)est0
  • t = 0 t = 0 t=0 f ( t ) e − s t → f ( 0 + ) f(t)e^{-st} \to f(0^+) f(t)estf(0+)

因此:
∫ 0 ∞ f ′ ( t ) e − s t   d t = − f ( 0 + ) + s ∫ 0 ∞ f ( t ) e − s t   d t \int_{0}^{\infty} f'(t) e^{-st} \, dt = -f(0^+) + s \int_{0}^{\infty} f(t)e^{-st} \, dt 0f(t)estdt=f(0+)+s0f(t)estdt
根据定义:
L { f ′ ( t ) } = s F ( s ) − f ( 0 + ) \mathcal{L}\{f'(t)\} = sF(s) - f(0^+) L{f(t)}=sF(s)f(0+)

4. 卷积性质证明

h ( t ) = f 1 ( t ) ∗ f 2 ( t ) = ∫ 0 t f 1 ( τ ) f 2 ( t − τ )   d τ h(t) = f_1(t) * f_2(t) = \int_{0}^{t} f_1(\tau)f_2(t-\tau) \, d\tau h(t)=f1(t)f2(t)=0tf1(τ)f2(tτ)dτ,求 h ( t ) h(t) h(t) 的拉普拉斯变换:
L { h ( t ) } = ∫ 0 ∞ h ( t ) e − s t   d t = ∫ 0 ∞ ( ∫ 0 t f 1 ( τ ) f 2 ( t − τ )   d τ ) e − s t   d t \mathcal{L}\{h(t)\} = \int_{0}^{\infty} h(t)e^{-st} \, dt = \int_{0}^{\infty} \left( \int_{0}^{t} f_1(\tau)f_2(t-\tau) \, d\tau \right) e^{-st} \, dt L{h(t)}=0h(t)estdt=0(0tf1(τ)f2(tτ)dτ)estdt
交换积分顺序(Fubini 定理):
= ∫ 0 ∞ ∫ τ ∞ f 1 ( τ ) f 2 ( t − τ ) e − s t   d t   d τ = \int_{0}^{\infty} \int_{\tau}^{\infty} f_1(\tau)f_2(t-\tau)e^{-st} \, dt \, d\tau =0τf1(τ)f2(tτ)estdtdτ
t ′ = t − τ t' = t - \tau t=tτ,则 d t = d t ′ dt = dt' dt=dt,且 t = τ t = \tau t=τ 时, t ′ = 0 t' = 0 t=0,当 t → ∞ t \to \infty t 时, t ′ → ∞ t' \to \infty t
= ∫ 0 ∞ f 1 ( τ ) ( ∫ 0 ∞ f 2 ( t ′ ) e − s ( t ′ + τ )   d t ′ ) d τ = \int_{0}^{\infty} f_1(\tau) \left( \int_{0}^{\infty} f_2(t') e^{-s(t'+\tau)} \, dt' \right) d\tau =0f1(τ)(0f2(t)es(t+τ)dt)dτ
e − s τ e^{-s\tau} esτ 提取到外部:
= ∫ 0 ∞ f 1 ( τ ) e − s τ ( ∫ 0 ∞ f 2 ( t ′ ) e − s t ′   d t ′ ) d τ = \int_{0}^{\infty} f_1(\tau)e^{-s\tau} \left( \int_{0}^{\infty} f_2(t')e^{-st'} \, dt' \right) d\tau =0f1(τ)esτ(0f2(t)estdt)dτ
根据定义:
= F 1 ( s ) F 2 ( s ) = F_1(s)F_2(s) =F1(s)F2(s)

因此,卷积性质成立。

MATLAB编写拉氏变换代码

% 确保你已经加载了 Symbolic Math Toolbox
syms t s a omega;

% 定义一个符号函数 f(t)
f1 = 1;                             % f(t) = 1
f2 = t;                             % f(t) = t
f3 = exp(a*t);                      % f(t) = e^(a*t)
f4 = sin(omega*t);                  % f(t) = sin(ωt)
f5 = cos(omega*t);                  % f(t) = cos(ωt)

% 计算各个函数的拉普拉斯变换
F1 = laplace(f1, t, s);             % 拉普拉斯变换 f1(t) = 1
F2 = laplace(f2, t, s);             % 拉普拉斯变换 f2(t) = t
F3 = laplace(f3, t, s);             % 拉普拉斯变换 f3(t) = e^(a*t)
F4 = laplace(f4, t, s);             % 拉普拉斯变换 f4(t) = sin(ωt)
F5 = laplace(f5, t, s);             % 拉普拉斯变换 f5(t) = cos(ωt)

% 输出结果
disp('Laplace Transform of f1(t) = 1:');
disp(F1);

disp('Laplace Transform of f2(t) = t:');
disp(F2);

disp('Laplace Transform of f3(t) = e^(a*t):');
disp(F3);

disp('Laplace Transform of f4(t) = sin(ω*t):');
disp(F4);

disp('Laplace Transform of f5(t) = cos(ω*t):');
disp(F5);

运行结果为:

Laplace Transform of f1(t) = 1:
1/s

Laplace Transform of f2(t) = t:
1/s^2

Laplace Transform of f3(t) = e^(a*t):
1/(s-a)

Laplace Transform of f4(t) = sin(ω*t):
ω/(s^2 + ω^2)

Laplace Transform of f5(t) = cos(ω*t):
s/(s^2 + ω^2)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱代码的小黄人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值