UA MATH564 概率论 概率不等式

这篇博客详细介绍了概率论中的几个重要不等式,包括Markov不等式、Chebyshev不等式和Chernoff Bound。通过举例和数学推导,阐述了它们的应用及其在概率计算中的价值,特别是Chernoff Bound的证明和其作为概率近似的有效性。
摘要由CSDN通过智能技术生成

Markov不等式

假设 g g g是一个取值为正的函数,定义
m B = inf ⁡ { g ( t ) : t ∈ B } m_B = \inf\{g(t):t \in B\} mB=inf{ g(t):tB}
从而
E g ( X ) ≥ E [ g ( X ) I B ( X ) ] ≥ E [ m B I B ( X ) ] = m B P ( X ∈ B ) Eg(X) \ge E[g(X)I_B(X)] \ge E[m_B I_B(X)] = m_B P(X \in B) Eg(X)E[g(X)IB(X)]E[mBIB(X)]=mBP(XB)
如果 g g g是单调递增的函数, B = [ x , + ∞ ) B = [x,+\infty) B=[x,+),则上式可以写成
E g ( X ) ≥ g ( x ) P ( X > x ) ⇒ P ( X > x ) ≤ E [ g ( X ) ] g ( x ) Eg(X) \ge g(x) P(X >x) \Rightarrow P(X >x ) \le \frac{E[g(X)]}{g(x)} Eg(X)g(x)P(X>x)P(X>x)g(x)E[g(X)]
这个不等式被称为Markov不等式。

Chebyshev不等式

在Markov不等式中,假设 X = ∣ Y − E Y ∣ X = |Y-EY| X=YEY g ( x ) = x 2 g(x)=x^2 g(x)=x2,则
P ( ∣ Y − E Y ∣ > x ) ≤ V a r Y x 2 , ∀ x > 0 P(|Y-EY|>x) \le \frac{VarY}{x^2},\forall x>0 P(YEY>x)x2VarY,x>0
这个不等式叫Chebyshev不等式。

Chernoff Bound

为了介绍Chernoff Bound,这里先简单介绍一下Legendre变换。

Legendre变换

首先需要了解的是Legendre变换和Fourier、Lagrange变换不一样,它不是积分变换,它是实数和实值凸函数的对合变换。对合很好理解,从逻辑上解释就是双重否定表肯定,从函数上来看就是 f ( f ( x ) ) = x f(f(x))=x f(f(x))=x,满足条件的这种 f f f就叫对合变换。

假设 f : D ⊂ R n → R f:D \subset \mathbb{R}^n \to \mathbb{R} f:DRnR是凸函数,它的Legendre变换是 f ∗ : D ∗ ⊂ R n → R f^*:D^*\subset \mathbb{R}^n \to \mathbb{R} f:DR

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值