UA MATH563 概率论的数学基础 中心极限定理10 Borel-Cantelli引理

这篇博客深入探讨了概率论中的Borel-Cantelli引理,包括其定义、性质和相关证明。通过一系列数学推导,解释了在不同条件下事件发生的概率极限行为,尤其是当事件序列无限多次发生或最终发生时的概率分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

UA MATH563 概率论的数学基础 中心极限定理10 Borel-Cantelli引理

这一讲我们介绍一个非常重要的结果,Borel-Cantelli引理,先引入一些基本概念。

假设 ( Ω , F , P ) (\Omega,\mathcal{F},P) (Ω,F,P)是一个概率空间:

lim sup ⁡ A n = ∩ m ≥ 1 ∪ n ≥ m A n = { w : w 属 于 无 数 个 事 件 A n } \limsup A_n = \cap_{m \ge 1} \cup_{n \ge m}A_n = \{w:w属于无数个事件A_n\} limsupAn=m1nmAn={ w:wAn}

我们把这个事件简记为 { A n   i . o . } \{A_n\ i.o.\} { An i.o.} (infinitely often);
lim inf ⁡ A n = ∪ m ≥ 1 ∩ n ≥ m A n = { w : w 属 于 所 有 的 A n , n ≥ m 0 } \liminf A_n = \cup_{m \ge 1} \cap_{n \ge m}A_n = \{w:w属于所有的A_n,n \ge m_0\} liminfAn=m1nmAn={ w:wAn,nm0}

我们把这个事件简记为 { A n   e . v . } \{A_n\ e.v.\} { An e.v.} (eventually);关于这两个定义有下面的性质:

  1. { A n   i . o . } ⊃ { A n   e . v . } \{A_n\ i.o.\} \supset \{A_n\ e.v.\} { An i.o.}{ An e.v.}
  2. { A n   i . o . } C = { A n C   e . v . } \{A_n\ i.o.\}^C=\{A_n^C \ e.v.\} { An i.o.}C={ AnC e.v.}
  3. 如果 A n ↑ A_n \uparrow An,则 { A n   i . o . } = { A n   e . v . } = ∪ k ≥ 1 A k \{A_n\ i.o.\}=\{A_n \ e.v.\}=\cup_{k \ge 1}A_k { An i.o.}={ An e.v.}=k1Ak
  4. 如果 A n ↓ A_n \downarrow An,则 { A n   i . o . } = {
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值