UA MATH563 概率论的数学基础 中心极限定理10 Borel-Cantelli引理
这一讲我们介绍一个非常重要的结果,Borel-Cantelli引理,先引入一些基本概念。
假设 ( Ω , F , P ) (\Omega,\mathcal{F},P) (Ω,F,P)是一个概率空间:
lim sup A n = ∩ m ≥ 1 ∪ n ≥ m A n = { w : w 属 于 无 数 个 事 件 A n } \limsup A_n = \cap_{m \ge 1} \cup_{n \ge m}A_n = \{w:w属于无数个事件A_n\} limsupAn=∩m≥1∪n≥mAn={ w:w属于无数个事件An}
我们把这个事件简记为 { A n i . o . } \{A_n\ i.o.\} {
An i.o.} (infinitely often);
lim inf A n = ∪ m ≥ 1 ∩ n ≥ m A n = { w : w 属 于 所 有 的 A n , n ≥ m 0 } \liminf A_n = \cup_{m \ge 1} \cap_{n \ge m}A_n = \{w:w属于所有的A_n,n \ge m_0\} liminfAn=∪m≥1∩n≥mAn={
w:w属于所有的An,n≥m0}
我们把这个事件简记为 { A n e . v . } \{A_n\ e.v.\} { An e.v.} (eventually);关于这两个定义有下面的性质:
- { A n i . o . } ⊃ { A n e . v . } \{A_n\ i.o.\} \supset \{A_n\ e.v.\} { An i.o.}⊃{ An e.v.}
- { A n i . o . } C = { A n C e . v . } \{A_n\ i.o.\}^C=\{A_n^C \ e.v.\} { An i.o.}C={ AnC e.v.}
- 如果 A n ↑ A_n \uparrow An↑,则 { A n i . o . } = { A n e . v . } = ∪ k ≥ 1 A k \{A_n\ i.o.\}=\{A_n \ e.v.\}=\cup_{k \ge 1}A_k { An i.o.}={ An e.v.}=∪k≥1Ak
- 如果 A n ↓ A_n \downarrow An↓,则 { A n i . o . } = {