阿里巴巴联合南京大学最新文章:Explaining Time Series via Contrastive and Locally Sparse Perturbations
Introduction:https://github.com/zichuan-liu/ContraLSP/blob/main/intro_contralsp_slides.pdf
github: https://github.com/zichuan-liu/ContraLSP
近日,由阿里云计算平台大数据基础工程技术团队主导,与南京大学、宾夕法尼亚州立大学、清华大学、达摩院等机构合作,解释时间序列预测模型的论文《Explaining Time Series via Contrastive and Locally Sparse Perturbations》被机器学习领域顶会ICLR 2024接收。
该论文提出了一种创新的基于扰动技术的时间序列解释框架ContraLSP,该框架主要包含一个学习反事实扰动的目标函数和一个平滑条件下稀疏门结构的压缩器。论文在白盒时序预测,黑盒时序分类等仿真数据,和一个真实时序数据集分类任务中进行了实验,ContraLSP在解释性能上超越了最先进的模型,显著提升了时间序列数据解释的质量。
背景
在金融、游戏和医疗保健等领域,为机器学习模型所做的预测提供可靠的解释具有极高的重要性,因为透明度和可解释性通常是道德和法律的先决条件。如图1所示,学者们经常处理复杂的视觉、文本、图结构数据通过选择最显著的因子,但是对解释时间序列模型的方法的研究仍然是一个未充分探索的前沿。此外,将最初为不同数据类型设计的解释器进行适配带来了挑战,因为它们的归纳偏差可能难以适应时间序列数据本质上的复杂性和较低的可解释性。