SPSS实现距离分析

本文介绍了如何使用SPSS进行距离分析,旨在确定数据个案间的相似性或不相似性。通过分析12、34和5的数据,发现1和2最为相似,而5与其它组别不相似。在SPSS中,通过"分析-相关-距离"菜单进行操作,输出非相似性和相似性矩阵,结果显示1和2的相似性最高,1和5的相似性最低。这些结果有助于理解数据集中的群组结构和相似模式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

总目录:SPSS学习整理


目的

输出不同个案之间的距离,用户自己判断相似或不相似程度。

适用情景

数据处理

数据1

在这里插入图片描述
在这里插入图片描述
Tablueau作图直观感受,12相似,34相似,5和其他不太相似。

数据2

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
想了想应该这个图比较符合分析的目的,比较这三组数据的相似性。不过也可以发现从图上不太能直观感受到谁和谁更相似,需要数据支持。

SPSS操作

分析——相关——距离

操作1

在这里插入图片描述
在这里插入图片描述
把非相似性设置好后点击确定,输出非相似性结果,然后继续操作,输出相似性表格。在这里插入图片描述
在这里插入图片描述

操作2

在这里插入图片描述
在这里插入图片描述
把非相似性设置好后点击确定,输出非相似性结果,然后继续操作,输出相似性表格。
在这里插入图片描述
在这里插入图片描述

SPSS输出结果分析

结果1

在这里插入图片描述
注意这里的文字,非相似性矩阵,也就是说越接近0相似性越大,非相似性数值越大,说明越不相似。图中可以看出1和2距离只有0.066,是所有组中最相似的两组,5和1是最不相似的两组,距离为最大值0.546.
在这里插入图片描述
近似值矩阵也得到了同样的结果,1和2相关性达到最高的0.999,1和5为相关性最低的两组相关性为0.926.

结果2

在这里插入图片描述
分析方法如上图,1和3最相似,1和2最不相似。
在这里插入图片描述
相似性矩阵得到同样的结果:1和3最相似,1和2最不相似。

知识点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值