SPSS之判别分析

本文详细介绍了SPSS中判别分析的过程,包括Fisher判别法和Bayes判别法的选择,以及均值检验和协方差齐性检验的重要性。通过MBA录取数据实例展示了如何构建判别模型并分析结果,评估了分类的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SPSS的判别分析过程中默认使用的是Fisher判别法和Bayes判别法,并以前者为主,在指定选项后也可以给出Bayes判别法的结果。

SPSS中判别分析在【分析】—【分类】—【判别】中完成。选定类别变量放入【分组变量】框中,单击定义范围(D)按钮给出类别变量的类别值范围,选择判别变量到【自变量】框中。指定判别变量进入策略:【一起输入自变量】选项,表示所有判别变量同时进入,为默认策略;【使用步进法】为逐步筛选策略。

判别分析的准备工作:均值检验和协差阵齐性检验。 

        (1)均值检验。要使判别分析的效果较为理想,多个类别总体下的各判别变量的均值应存在显著差异,否则误判率会较高。通常,应先进行总体的均值检验,判断各类别总体下判别变量的组间差是否显著。SPSS中通过【判别分析】—统计量(S)—【判别分析:统计】— 描述性 —【单变量ANOVA(A)】来实现均值检验,检验的原假设H0:类别总体下的各判别变量的均值相等检验统计量为Wilk’s λ统计量,检验方法是方差分析法

        (2)协方差齐性检验。在距离判别中,各类别总体的协差阵相等和不等将采用不同的判别函数,因此,应判断协方差阵是否存在显著差异,或采用Box’M法进行检验。但从实用角度来说,真正完全满足协方差齐性条件的数据几乎不存在,所以一般不关心它的结果。

Fisher判别函数。Fisher判别法,也称为典则判别法,是SPSS中的默认方法。SPSS在默认情况下输出的是标准化的Fisher判别函数的判别系数。如果在SPSS中,选择【判别分析】——统计量(S)—【判别分析:统计】—【函数系数】框下,勾选【未标准化(V)】选项,表示输出非标准化的Fisher判别函数的判别系数。

贝叶斯判别函数。SPSS中选择【判别分析】——统计量(S)—【判别分析:统计】—【函数系数】框下,选择【Fisher’s】选项,可以求得Bayes判别函数的系数。

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黎曼最初的梦想

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值