SPSS的判别分析过程中默认使用的是Fisher判别法和Bayes判别法,并以前者为主,在指定选项后也可以给出Bayes判别法的结果。
SPSS中判别分析在【分析】—【分类】—【判别】中完成。选定类别变量放入【分组变量】框中,单击定义范围(D)按钮给出类别变量的类别值范围,选择判别变量到【自变量】框中。指定判别变量进入策略:【一起输入自变量】选项,表示所有判别变量同时进入,为默认策略;【使用步进法】为逐步筛选策略。
判别分析的准备工作:均值检验和协差阵齐性检验。
(1)均值检验。要使判别分析的效果较为理想,多个类别总体下的各判别变量的均值应存在显著差异,否则误判率会较高。通常,应先进行总体的均值检验,判断各类别总体下判别变量的组间差是否显著。SPSS中通过【判别分析】—统计量(S)—【判别分析:统计】— 描述性 —【单变量ANOVA(A)】来实现均值检验,检验的原假设H0:各类别总体下的各判别变量的均值相等,检验统计量为Wilk’s λ统计量,检验方法是方差分析法。
(2)协方差齐性检验。在距离判别中,各类别总体的协差阵相等和不等将采用不同的判别函数,因此,应判断协方差阵是否存在显著差异,或采用Box’M法进行检验。但从实用角度来说,真正完全满足协方差齐性条件的数据几乎不存在,所以一般不关心它的结果。
Fisher判别函数。Fisher判别法,也称为典则判别法,是SPSS中的默认方法。SPSS在默认情况下输出的是标准化的Fisher判别函数的判别系数。如果在SPSS中,选择【判别分析】——统计量(S)—【判别分析:统计】—【函数系数】框下,勾选【未标准化(V)】选项,表示输出非标准化的Fisher判别函数的判别系数。
贝叶斯判别函数。SPSS中选择【判别分析】——统计量(S)—【判别分析:统计】—【函数系数】框下,选择【Fisher’s】选项,可以求得Bayes判别函数的系数。
通