Matlab: 小波分析—时间序列的多时间尺度分析(一)

本文探讨了如何使用小波分析处理地学中的非平稳时间序列,如年降水量,通过小波变换提取不同时间尺度的信息,包括小波系数、模方、方差等,以揭示其复杂变化趋势。文章详细介绍了MATLAB中的小波分析过程和应用实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

​​Introduction


时间序列(Time Series)是地学研究中经常遇到的问题。在时间序列研究中,时域和频域是常用的两种基本形式。


其中,时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息;

频域分析(如Fourier变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。

然而,地学中许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。

对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息。

显然,时域分析和频域分析对此均无能为力。
20世纪80年代初,由Morlet提出的一种具有时—频多分辨功能的小波分析(Wavelet Analysis)为更好的研究时间序列问题提供了可能,
它能清晰的揭示出隐藏在时间序列中的多种变化周期,
充分反映系统在不同时间尺度中的变化趋势,
并能对系统未来发展趋势进行定性估计。
本帖以美国某气象站1894~2010年连续的年降水量为例,试用小波分析,完成如下任务:
①小波变换系数;
②绘制小波系数实部等值线图;
③绘制小波系数模和模方等值线图;
④绘制小波方差图;以及
⑤绘制不同时间尺度的小波实部过程线。
所谓年降水量时间序列的多时间尺度是指:年降水量在演化过程中,并不存在真正意义上的变化周期,而是其变化周期随着研究尺度的不同而发生相应的变化,这种变化一般表现为小时间尺度的变化周期往往嵌套在大尺度的变化周期之中。也就是说,年降水量变化在时间域中存在多层次的时间尺度结构和局部变化特征。
小波分析的计算过程请参考:小波分析—经典小波方差制作步骤等。
小波分析的基本理论在此不多叙述,请参考其他文献。本帖主要介绍小波分析的一般过程,数据及部分代码将附在文末

0.年降水量的变化趋势分析

该站点的年降水量变化情况(LI_plot函数)如图 0所示,其发展呈微微上升的趋势,降水量最高年份出现在2003年,全年累计达到1610.70mm,最低值出现在1965年,累计仅有748.90mm。

1.数据的加载

加载多年降水量至MATLAB使用Load命令。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

___Y1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值