手把手教你推导morlet小波变换公式

一、小波计算公式

        连续小波的计算公式:

        W\left( a,b \right) =\int_{-\infty}^{\infty}{x}\left( t \right) \Psi ^*\left( \frac{t-b}{a} \right) \,dt

        其中,x\left( t \right)是原始信号,\Psi ^* 是小波函数的复共轭, a是尺度参数, b是平移参数。

        这个公式描述了如何将原始信号x(t)在不同尺度 a和平移参数 b下与小波函数\Psi(t)进行内积运算。

        t - b 是时间轴上的平移参数。在小波分析中,t - b表示对信号 x(t) 在时间轴上进行平移,其中 b 是平移参数。这个平移操作使得我们可以将小波函数 \Psi(t)与信号在不同时间位置上进行匹配。

        通过调整平移参数 b,我们可以改变小波函数在时间轴上的位置,从而使其与信号在不同时间位置上进行匹配。

这种平移操作允许我们对信号的不同时间段进行分析,并在不同时间位置上捕获信号的局部特征。

总之,t - b 表示对信号在时间轴上进行平移,b是平移参数,通过调整b可以控制小波函数在时间轴上的位置,从而适应不同时间位置上的信号特征。

        在小波分析中,\left( \frac{t-b}{a} \right)表示对时间轴上的信号 t进行平移和尺度变换。具体地,a是尺度参数,b 是平移参数。将 t 减去b 表示对信号在时间上进行平移,而将结果除以a 则表示对信号在时间上进行尺度变换。

        这种平移和尺度变换的操作使得小波函数能够适应不同尺度和时间位置上的信号特征。通过调整尺度参数 a 和平移参数b,我们可以使小波函数具有不同的频率和时域分辨率,从而对信号进行更精细的分析。

        总之,\left( \frac{t-b}{a} \right) 这一项表示对时间轴上的信号进行平移和尺度变换,以适应不同尺度和时间位置上的信号特征。

        在小波分析中,\int_{-\infty}^{\infty} x\left( t \right) \Psi^*\left( \frac{t-b}{a} \right) \,dt表示信号x(t)与小波函数的复共轭\Psi^*\left( \frac{t-b}{a} \right)在整个时间轴上的内积运算结果。这个内积运算是小波变换中的关键步骤,它用于计算信号在不同尺度和时间位置上的小波变换系数。

        具体来说,这个内积运算可以被理解为信号x(t)在整个时间轴上与经过尺度变换和平移后的小波函数的复共轭\Psi^*\left( \frac{t-b}{a} \right)进行乘积运算,并对结果在整个时间轴上进行积分。这个过程可以帮助我们理解信号在不同尺度和时间位置上的局部特征,并获取信号的小波变换系数。

        因此,\int_{-\infty}^{\infty} x\left( t \right) \Psi^*\left( \frac{t-b}{a} \right) \,dt表示信号 x(t)与小波函数的复共轭在整个时间轴上的内积运算结果,它是小波变换的核心操作之一。

        W(a, b)表示小波变换系数,它是通过在不同尺度a 和时间平移 b 下对信号 x(t) 与小波函数的复共轭进行内积运算得到的结果。换句话说,W(a, b) 表示信号x(t) 在尺度 a 和时间位置b下的局部特征。

        具体来说,W(a, b)描述了信号在不同频率尺度a 和不同时间位置 b 上的局部能量分布,它是小波分析中的核心输出之一。通过分析小波变换系数W(a, b),我们可以了解信号在不同尺度和时间位置上的局部特征、频率成分以及能量分布情况,从而实现对信号的时频分析和特征提取。

        因此&#

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

___Y1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值