对盆地尺度下地下水资源评价和地下水流动模式的演变研究,都需要对地下水系统经历大规模人类活动影响以前的流动模式进行分析。
地下水中的同位素组成信息因保留了历史时期补给地下水的演变特征,被广泛用于地下水补给,地下水滞留时间和流动模式的研究。
特别是利用同位素定年技术对地下水年龄的研究有力推动了对复杂盆地中地下水流动过程的认识。
地下水的演化过程受水文地质条件,地下水动力和化学条件的控制,因此地下水年龄反映的是多种因素共同作用的结果。
而利用同位素信息对地下水流动过程进行解释时所采用模型多只考虑同位素随地下水的运动(对流),往往忽略同位素作为一种溶质固有的弥散,分子扩散和混合作用。近年来,将同位素年龄数据和逐步发展起来的地下水年龄模拟技术相结合在某种程度上更能合理解释盆地地下水年龄结构构成和地下水流动模式。
3.1 地下水年龄及其应用
地下水循环和可更新能力是评价地下水开发可持续性的关键内容。
地下水年龄(或近似认为地下水滞留时间)是自地下水补给进入地下水系统到取样点单位体积水样内的水分子运动时间的平均值。
对于通常采用的环境示踪剂测定的地下水年龄方法,地下水年龄的概念包括了对流、水动力弥散和化学反应综合作用的结果(Goode,1996;Bethke和Johnson,2002a)。
地下水年龄可以提供水循环和历史演变的重要信息,包括补给速率,地下水流速和水流路径(Smethie等,1992;Cook和Bohlke,2000;Zoellmann等,2001;Pint 等,2003;Xu和Beekman,2003;Sturchio等,2004;Newman等,2010)。
因此,地下水年龄数据可以用来校正地下水模型,帮助认识地下水流场,评估地下水的可更新能力(Sultan等,2000;Zhu,2000;Sanford等,2004;Chen等,2005;Bethke和Johnson,2008)。
采用环境示踪剂测试技术进行地下水定年,可以认为示踪剂浓度的累积或衰减速度是恒定的(Clark和Fritz,1997;Kazemi等,2006)。
如此测定得到的地下水年龄分布也可用来反求地下水补给并标识地下水流特征(例如,Chen,2001)。
然而,大多数模型采用的“管道流”(piston flow)假设条件,以及弥散和混合信息的缺乏均影响了这类方法的可靠性(Massoudieh和Ginn,2011)。
单一示踪剂信息很难表示出水样中的年龄分布,因此同一水样采用不同示踪剂测出的地下水年龄往往有很大出入。
这也导致了水文地质研究领域对地下水年龄的重新思考,耦合同位素示踪信息和地下水数值模拟技术,识别地下水年龄和水流系统特征,成为这一领域未来研究的重要方向之一(Bethke和Johnson,2008)。
过去20年中,几大类数学模型已被用于模拟地下水年龄的分布。
一类为集中参数模型(Richter等,1993;Amin和Campana,1996)。
此类模型假定已知影响年龄分布的主要因素过程,然后求解逆问题以拟合模型计算和测定的地下水年龄。
给定一已知流速场,地下水对流年龄可以采用解析解或粒子追踪方法计算。
然而,计算得到的地下水对流年龄忽略了沿流线的稀释、弥散和混合过程(Bethke和Johnson,2002a,2002b)。
另外,粒子追踪方法不能计算地下水滞留时间的分布,因为地下水的体积对计算得到的地下水年龄是没有影响的(Kazemi等,2006)。
更详尽考虑各种因素的模型是采用对流-弥散方程,类似于溶质迁移的方式,将地下水年龄认为是具有一定浓度的溶质,以描述地下水年龄的运移过程(Bethke和Johnson,2008)。
Goode(1996)推导了描述地下水平均年龄(mean age)的运移控制方程。
Engesgaard和Molson(1998)采用这一方法评价了某区域地下水流系统并发现其计算地下水年龄与氚年龄具有很好的一致性。
Castro和Goblet(2005)认为当地下水系统中混合作用不明显时,采用这种方法能够给出地下水年龄的可靠分布。
Varni和Carrera(1998)利用矩分析方法对地下水年龄分布进行了计算,认为不同阶数的矩可作为不同地下水同位素年龄的上下界。
Bethke和Johnson(2002b)认为弱透水层对地下水年龄的影响仅取决于弱透水和含水层之间的水量交换并推到了包括弱透水层年龄分布的理想方程。
Ginn(1999)推导了四维尺度中地下水年龄对流-弥散控制方程。当年龄维度上为单位速度,且弥散为零时,且方程形式与上述方程是一致的(Ginn等,2009)。
这些模型奠定了区域尺度地下水分布模拟的基础,耦合同位素信息和数值模型有助于校正水流模型,更有助于分析和挖掘可靠的同位素测年数据。
前人研究中,已有大量应用同位素信息研究华北平原地下水补给(Wang等,2008;Liu等,2009;von Rohden等,2010),确定地下水年龄和水流路径(张之淦等,1987;张宗祜等,1997;Chen等,2005;Kreuzer等,2009)。
其中存在的主要问题是,不同同位素信息得到的地下水年龄不一致。
测定碳-14年龄范围为10 - 30 kyr(张之淦等,1987;Zhang等,2001;Chen等,2005;Wu等,2007;Kreuzer等,2009),而氯-36年龄为250 - 300 kyr(刘存富等,1993;董悦安等,2002)。
本研究的目的是融合华北平原已有的大量碳-14测年数据和地下水水流模型,对水流模型中的地下水补给进行重新率定,并对地下水系统的改变进行探讨。
3.2 地下水年龄计算
3.2.1 地下水年龄模拟计算
Goode(1996)推导的直接模拟地下水年龄分布的控制方程如下:
式中A为地下水平均年龄。
公式(6-1)可将A=0作为初始条件。
式中0阶反应项1表明地下水年龄随模拟时间的增长速率为1(即模拟时间1年,地下水年龄增长1年)。
上述模型的求解可采用通用的对流-弥散方程的求解软件进行。
其得到的地下水年龄,反映了对流、弥散、扩散以及沿水流路径的混合作用,与同位素年龄数据更具可比性 (Cornaton和Perrochet,2006;Newman 等,2010)。
通常情况下,由于古水文信息无法获得,一般只关心上述方程的稳态解,即,方程变为:
对于边界条件,水流模型中的隔水边界对应于零“年龄质量”通量边界;因为一般边界流入(不包括相邻含水层边界)地下水年龄远小于盆地内,特别是深层地下水年龄,这些边界(包括给定水位边界和流量边界)也一般处理成零“年龄质量”通量边界。
而流出边界,与常规溶质运移模型类似,流出地下水年龄即为边界处地下水年龄,但边界处仅允许发生对流。
值得注意的是,模型的初始条件是否对现今的地下水年龄分布产生影响,即假设年龄分布已经达到稳态是否成立。
但事实上,我们确实没有证据能够证明地下水年龄分布已经达到稳态,地下水系统的初始状态势必会对现今的地下水年龄分布产生影响。
这也就意味着模拟地下水年龄分布时,严格来讲需要从地下水系统形成之初的状态开始模拟(Ginn等,2009;Lemieux等,2010;Schwartz等,2010),这显然是不现实的,因此并不在本论文研究范畴之内。
将公式(3-2)中的弥散系数(D)设为0,求解该公式即可得到对流年龄(advective age)分布(如,Castro和Goblet,2005;Molson和Frind,2012):
式中x0为某流线在补给区的起始位置;x为流线上任一观测点。
3.2.2 碳-14年龄
虽然已有多种同位素被用于华北平原深层地下水年龄研究,但为保证数据及结果的一致性,本论文仅利用14C 年龄数据。
并且,为尽可能消除井管内与年轻水的混合造成的影响,仅利用3H浓度小于1 TU(氚单位)的数据。
共从前人研究成果中(见表 3-1)收集采用97个碳同位素数据,所有数据均包括14C浓度和δ13C值(表 3-1)。
利用14C 浓度计算地下水年龄公式为:
式中5730为14C的半衰期;A为14C 浓度(以现代碳百分比,pmc计);A0为初始14C浓度。
A0根据13C浓度采用Pearson方法(Pearson和Hanshaw,1970)进行校正。
校正后的地下水14C年龄分布表明随着取样井深度增加地下水年龄有明显变老的趋势(图 3-1a)。
虽然有多种方法可以用来校正14C年龄,因不同数据来源可利用数据不尽相同,为保证数据的一致性,没有采用多种校正方法然后取平均的方式。
图 3-1. 碳-14年龄随井深度分布 (数据见表 3-1)