1.1 水文系统与水文过程研究
1.1.1 水文系统研究
水是联系地球系统地圈—生物圈—大气圈的纽带,水圈中的各种水体通过降水、蒸发、散发、截留、下渗、滞蓄和径流(地表径流、壤中流和地下水流)等水文过程紧密联系,相互转化,不断更新,形成一个庞大的水循环动态系统。从20世纪80年代中期以来,实施了一系列国际研究计划,如IGBP的“水循环的生物圈方面”核心计划(BAHC)和WCRP的“全球能量与水循环实验”计划(GEWEX)等,这些计划本质上都将水文系统的研究作为其核心问题之一。GEWEX是宏观尺度的研究,从全球气候的角度出发研究水文系统;BAHC则更多地从生态学的角度研究水文系统。这两个计划在内容上互补,在时间上几乎同步,将水文系统研究的深度和广度推向了一个新台阶。
目前,国内外对水文系统的研究均给予高度重视,并通过一系列研究计划和工作,使水文系统研究有较大进展。在大尺度水文系统研究方面,主要关注大气圈—水圈—生物圈—冰雪圈—岩石圈—社会圈的水文系统的综合影响问题;研究利用大气环流模型(GCMs)、遥感技术、世界气象观测网来预测水循环变化;模拟全球水文循环过程及其对大气、海洋和陆面的影响;利用大气与陆面特征的全球观测值确定水循环和能量循环。中等尺度水文系统研究的研究范围是200~2000km,主要利用遥感技术研究植被、水的可利用性、蒸散发与气候之间的关系;利用大气环流模式研究水循环对下垫面变化的响应,修正大气环流模式,预测区域环境变化、区域开发对水文系统的影响等。中小尺度水文系统的研究范围一般小于200km,主要研究水、热通量从大气进入不同植物、积雪场、集水区、土壤和水体后的迁移转化机理。
近年来,我国水文科学研究取得了很大的进步与发展,但与国际前沿水平相比在不同尺度水文循环及其界面过程方面的研究仍较为薄弱。我国水文系统研究是从地表过程开始的,工作偏重于对独立水文循环要素的研究。在降水量研究方面,对“暴雨时空分布统计特征研究”“致洪暴雨中期预报研究”等,取得一些有价值的新成果;在径流研究方面,对流域产流理论、计算方法以及模拟模型研究,尤其是数值地貌学的理论和方法被应用于流域汇流研究,取得了一些成果;在蒸发研究方面,关于作物蒸腾和土壤与潜水蒸发的研究取得较大进展,提出了一些计算新公式。
从系统论的观点来看,水文系统的研究最初始于单个水文系统研究,随着对系统间物质与能量交换的认识,水文系统的研究现已突破了传统单个水文系统研究的局限,开始着眼于整个水文过程,其发展过程大致经历了“三水转化-四水转化-SPAC系统-GSAPC系统”等研究阶段。在研究水循环的整体过程当中,水从一个系统向另外一个系统过渡的界面过程最能有效反映开放系统间的物质与能量交换信息,因此水文循环界面过程是近年研究的前沿和热点。代表性研究成果有:土壤-植物-大气系统水分运移界面过程研究(刘昌明等,1997),土-根界面行为对单根吸水的影响研究(黄明斌等,1997),土壤水势-植物叶面水势-蒸腾速率关系研究(邵明安等,1996)等。水文循环大气过程的研究是另一个研究方面,我国在中国大陆尺度和流域与区域尺度水文循环大气过程研究方面做了系统研究(刘国纬,1997)。此外,对区域水分内循环过程的研究也取得重要成果,揭示出在我国自然条件下,当地蒸发的水分通过再循环形成的降水约占当地总降水量的10%等新事实(刘国纬等,1996,1997)。目前水文系统研究的重点不仅在于系统间物质能量通过界面的传输,而且在于界面内部能量与物质的运移规律,如土壤与大气界面中植被体内的水分传输和能量的转移、地下水和地表水界面中土壤水运移规律等方面的研究。
1.1.2 水文过程分析
1.1.2.1 非线性理论
水文现象随时间而变化称为水文过程,如径流过程等。这些过程受到众多因素的影响呈现出随机性,隶属于随机过程的范畴。随机水文过程,一般是连续的,为了研究和计算方便,常将水文连续过程离散化,并称此为随机水文序列或水文时间序列。在古代中国和巴比伦,人们就已经能从天文观测所得到的时间序列中寻找周期,并以此预报一些天文现象。近代的Fourier奠定了周期分析的理论基础,给出了对时间序列进行周期分析的数学方法。直到现在人们仍在广泛应用Fourier方法来分析研究各种自然现象,也仍然有人试图用周期外推的方法预报一些自然现象。1927年Yule首先提出AR模型(Autoregressive Model),并用于研究太阳黑子的时间序列。此后,又进一步发展到ARMA(Moving Average)、ARIMA(Integral Moving Average)等方法,并获得了广泛的应用。1970年由Box和Jenkins合著的《时间序列分析:预测和控制》一书的出版是时间序列分析史上一个非常重要的里程碑。该书使ARIMA模型迅速得到普及,为预测工作者提供了科学系统的分析方法。ARIMA模型一旦建立并通过检验后,在最小平方误差准则条件下,未来某个时期的预测值是该模型的条件期望值。ARIMA模型的出现大大地推动了时间序列分析的研究。到20世纪70年代末出现了非线性模型,如Priestley,M.B.的双线性模型,Ozaki,T.的非线性振动模型,Tong,H.(1978)提出的门限自回归(TAR)模型。
非线性和非高斯模型的理论和方法取得了许多进展。例如,门限自回归模型(TAR),该模型利用分段线性模型生成具有非线性特征的模型。同时,很多检验时间序列非线性的方法也随之出现。研究表明,非线性模型能改善预测的效果。另一类重要的非线性模型是ARCH模型,这类模型的贡献主要表现在对时间序列模型中方差的改进方面,同时出现了广义的ARCH模型(GARCH)和随机波动模型。非线性模型理论的进展集中在几何遍历性问题和非线性过程的平稳性这两方面。对于简单模型TAR.Chen和Tsay(1991),Petmeeelh和Woolford(1984)得出了一些有意义的结论。在非线性过程的稳定性研究中做出杰出贡献的有Meyn&Tweedie(1993)以及Tong(1990)等。在多元时间序列分析中通过利用库罗勒克指标(Kronecker Indices)或纯量分量模型(SCM)有效地解决了ARMA模型扩展过程中的识别问题。
近年来,在时间序列分析理论中发展最为迅速的当属单位根理论。这一理论主要研究随机漫步过程统计量的非对称性质。单位根问题已经引起了越来越多计量经济学家和统计学家的关注。它不但为决定ARIMA模型差分的阶提供了正式的检验方法,也为某些统计量的检验开辟了新的领域。Tsay和Tiao(1990)将单位根检验扩展到多元情形,这就是所谓的协整检验。
计算机硬件和软件技术的飞速发展对时间序列分析产生了深刻的影响:传统的分析技术(即线性高斯时间序列模型)由此取得了很多重大进展;在ARIMA模型的识别方面也有所突破;极大似然方法已经成为估计的标准方法。从20世纪80年代开始,有两种重要技术引起了人们的关注:一种是时间序列中马尔可夫链蒙特卡罗模拟方法(MCMC)的应用,这一方法在时间序列中的应用前景相当广阔;另一种是状态空间参数化和卡尔曼滤波的应用,将卡尔曼滤波引入时间序列分析的最初目的主要是有效地评价高斯极大似然函数和处理缺失的观测值。
在历史上,时间序列分析曾经存在着两种相互对立的分析方法,即频率域法和时间域法。时间域法是利用历史数据的自相关函数P和参数模型(诸如ARIMA模型)来描述时间序列的动态依存性。而频率域法则将注意力放在频率的谱分析或势分布上,以此来研究时间序列的理论和应用。Cooley和Tukey(1965)通过有效的谱估计在频率域分析方面取得过重大进展。随着时间的推移,这两种方法的严格界线已经不存在了。现在,运用何种方法应决定于分析的目的以及分析者的主观经验。
水文系统不仅是一个开放、复杂的巨系统,同时又是一个非线性复合系统,包含着系统空间和时间变化的非线性特征。水循环问题的研究需要引入新理论和新方法,从多方面揭示水文系统的内在规律。非线性科学的发展,尤其是混沌、分形和小波等非线性理论的发展和应用研究的不断深入,为复杂、开放、非线性的水文系统的定量分析与研究提供了新的理论和方法,从而也使水文系统的研究上升到非线性复杂系统的层次。同时,随着水文科学、技术的发展和水文资料的不断积累,特别是空间信息技术在水文水资源中的不断应用和发展,也为水文科学的非线性研究提供了基础条件。混沌、分形、神经网络和小波理论构成了非线性科学研究的主要内容,属于非线性科学研究的前沿领域。
分形(或分维)是指没有特征尺度,却有自相似结构的复杂几何体,分形最重要的特征是自相似性,自相似性即研究对象的局部与整体之间存在某种形式的相似,目前把形态、结构、功能和信息等方面具有的相似性统称为分形。Mandelbrot指出在自然系统中存在自相似性,河网是一种二维分形结构,其局部与整体之间存在相似性,并强调了应用分形和尺度转换理论描述这种自相似性的可能性。分形分析可以用来对自然现象进行预报和特征化,尤其是可以利用一个尺度上的信息预报另一个尺度的输出结果。Veltri等研究发现,分形几何在理解流域过程时十分有效,尽管不能明确的表达流域过程的物理机制和空间异质性,但仍可以基于合适的尺度转换原则,用物理模型来理解响应机制。Wilson等证明了微尺度流域的分形维数与主要河网的分形维数相似。这种联系表明,河网的概念可以用于描述小山区的地表径流,更好地理解和模拟山区的分离和输移过程。目前,对于尺度问题的研究已从水系的河网结构和流域的地形地貌等空间域尺度方面,转向对更多的领域展开更广泛的研究。
对于一个具有自相似性的流域来说,它没有一个特征尺度,即在任何的尺度下观察它都是一个流域,这种性质称为标度不变性,也称为无标度性。当一个系统的特征能够通过某个简单的转换因子(尺度因子)与另一个系统的相应特征联系起来的时候,则称这两个系统间存在相似性。研究分形性质及其应用的基础是分形理论。按照分形理论,在一定尺度范围内,局部和整体之间的相似性(某种意义上的统计量)在不同尺度中的相互关系决定于标度变换。其主要包含两个方面的研究问题:一是判断自相似性;二是标度指数的取值。标度理论最早可以追溯到1924年,研究不同尺度下测度之间的相互关系,其核心是标度不变性(或称标度性质),标度不变性说明了在一定的尺度范围内被研究对象的某种属性(特别是统计变量)在不同尺度下的相互关系可以由一个仅与尺度比值有关的标度(尺度)变换所决定。
1.1.2.2 小波理论
小波分析的基本思路是通过基本小波函数(母小波函数)的平移和伸缩描述水文时间序列在不同时间和频率尺度上的变化特性。小波分析是Fourier分析发展史上的一个里程碑式的进展,具有时、频同时局部化的优点,被誉为数学“显微镜”,其理论形成经历了三个阶段:Fourier变换阶段、短时Fourier变换阶段和小波分析阶段,小波函数是小波理论的重要内容,也是水文时间序列小波分析的前提和条件。小波分析的关键是小波变换,小波变换系数能显示水文时间序列在多种时频尺度上的变化特性及变化趋势。小波分析是水文多尺度时间分析的有效途径,可以为水资源的预测和合理开发提供强有力的分析计算方法。小波分析具有多分辨力的功能,应用于水文系统中可以对不同序列进行识别分类和揭示各种水文序列的变化特性;通过小波分析可以建立合适的用于预测预报的小波组合模型;通过小波的分解和重构可以进行随机模拟。从1993年小波理论引入水文学科以来,已经取得了一些研究成果,研究领域有水文多时间尺度分析、水文时间序列变化特性分析、水文预测预报和随机模拟。
小波研究的蓬勃发展开始于1986年,当时Meyer创造性地构造出了具有一定衰减性的光滑函数ψ,其二进制伸缩与平移{ψj,k(t)=2-j/2ψ(2-jt-k)∶j,k∈Z}构