嘿,记得给“机器学习与推荐算法”添加星标
近年来自监督学习技术,由于不需要大量的人工标注数据,而是从数据本身的任务出发学习特征表示,已在计算机视觉、自然语言处理等领域得到了越来越多的关注。推荐系统由于存在大量的未标注数据,自然而然的可以将自监督学习与其进行结合,因此本文对其进行了简单的总结,列举出10篇自监督学习技术在推荐上的应用。下文提到的文章均可在Github上的RSPapers项目上找到,或者向公众号后台回复【SSL】获取10篇打包好的论文合集。
https://github.com/hongleizhang/RSPapers/tree/master/00-Latest_Papers/SSL_for_RS
1. Socially-Aware Self-Supervised Tri-Training for Recommendation. KDD 2021.
本文考虑了社交网络中同质性的理论,因此对于同一个用户来说存在二部图中的用户和社交网络中的用户,然后将社交网络进行数据增强,并且与二部图进行对齐,随后三个Encoder生成的三个用户特征表示分别进行推荐任务和对比学习任务,以此来提高推荐系统的性能。