RSPapers | 基于自监督学习推荐系统论文合集

本文汇总了10篇关于自监督学习在推荐系统中的应用论文,包括Socially-Aware Self-Supervised Tri-Training、UPRec、S3-rec等,通过自监督学习任务提升推荐性能,涉及社交网络、序列推荐、图学习等多个方面。
摘要由CSDN通过智能技术生成

嘿,记得给“机器学习与推荐算法”添加星标


近年来自监督学习技术,由于不需要大量的人工标注数据,而是从数据本身的任务出发学习特征表示,已在计算机视觉、自然语言处理等领域得到了越来越多的关注。推荐系统由于存在大量的未标注数据,自然而然的可以将自监督学习与其进行结合,因此本文对其进行了简单的总结,列举出10篇自监督学习技术在推荐上的应用。下文提到的文章均可在Github上的RSPapers项目上找到,或者向公众号后台回复【SSL】获取10篇打包好的论文合集。

https://github.com/hongleizhang/RSPapers/tree/master/00-Latest_Papers/SSL_for_RS

1. Socially-Aware Self-Supervised Tri-Training for Recommendation. KDD 2021.

本文考虑了社交网络中同质性的理论,因此对于同一个用户来说存在二部图中的用户和社交网络中的用户,然后将社交网络进行数据增强,并且与二部图进行对齐,随后三个Encoder生成的三个用户特征表示分别进行推荐任务和对比学习任务,以此来提高推荐系统的性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值