如何使用大语言模型(LLM)自动构建知识图谱:基于OpenAI实现

本文介绍了如何利用OpenAI的GPT-3.5Turbo模型从电商产品标题中提取实体和关系,构建知识图谱,以实现从非结构化数据中提取有价值信息,支持决策制定和模型微调。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在昨天的文章《一文搞定检索增强生成(RAG)的理解和LangChain实现(附详细代码)》中,我们掌握了如何利用检索增强生成 (RAG) 这一技术,让大语言模型(LLM) 能够访问最新、私有的特定领域知识(比如企业自己的知识库),以便在文本生成和问答任务中能表现出更卓越的性能。

今天,我们将进一步探索如何将LLM转变成一个更加强大的信息提取工具,它不仅能够处理复杂的非结构化原始文本,还能将这些文本转化为结构化且易于查询的事实。在回顾一些关键概念之后,我们将重点介绍如何使用 OpenAI 的 GPT-3.5 Turbo 从原始文本数据(电商产品标题)中构建知识图谱。

毕竟大多数公司的数据中都有大量未能有效利用的非结构化数据,创建知识图谱能够最大程度的从这些数据中提取有价值的信息,并使用这些信息做出更明智的决策。当然,除了直接应用之外,我们也可以利用这个思路来构建结构化的大模型微调数据集。

小百科:什么是知识图谱?

知识图谱是一种语义网络,它不仅表达和相互连接现实世界中的实体,如人物、组织、物体、事件和概念,还描述这些实体的具体属性及其属性值。这些实体通过以下两种形式的三元组相互关联,构成了知识图谱的基础:

head → relation → tail

本文将使用 OpenAI 的 gpt-3.5-turbo 模型,针对kaggle上的亚马逊产品数据集中的标题数据,创建一个知识图谱。

图片

图片

可以看到,数据集包含若干产品的相关字段,但这次我们只用到里面的title字段,如果你手头有其他数据集,包含更完善的信息,也可以同时使用多个字段(如果你打算使用多个字段,那就直接把多个字段拼接为一个新的字段"text",比如标题_描述_规格),然后我们将使用 ChatGPT 从中提取构建知识图谱所需要的实体和关系信息。

1. Python依赖包安装并读取数据

首先,我们要在终端执行下面命令,安装依赖的Python包,或者在IDE中安装也可以。

接下来,我们使用 ChatGPT 来从产品数据中挖掘出实体和它们之间的关系,并把这些信息以 JSON 格式的对象数组返回。

为了引导 ChatGPT 正确进行实体关系提取,我们会提供一系列特定的实体类型和关系类型。这些类型将与 Schema.org 中的对应实体和关系相映射。映射时,我们用的键是提供给 ChatGPT 的实体和关系类型,而值则是 Schema.org 中相关对象和属性的 URL。

relation键,“head”和“tail”之间的关系类型;

5. 图谱构建

现在,我们为数据集中的每个产品调用 extract_information 函数,并创建一个包含所有提取的三元组的列表,这些三元组将代表我们的知识图谱。在本案例中,我们将仅使用 100 个产品的标题数据生成一个知识图谱。

得到的数据结果如下图所示——

图片

图片

6. 实体解析

实体解析的作用是将数据集中的实体与现实世界中的概念相匹配,会使用 NLP 技术,对数据集中的头部和尾部实体执行基本的实体解析。

在本案例中,我们将使用“all-MiniLM-L6-v2”这个句子转换器,为每个头部创建embedding,并计算头部实体之间的余弦相似度,并检查相似度是否大于 0.95,超过阈值的实体视为相同的实体,并将它们的文本值规范化为相等。同样的道理也适用于尾部实体。举个例子,如果我们有两个实体,一个值为“微软”,另一个值为“微软公司”,那么这两个实体将合并为一个。

我们按以下方式加载并使用embeddeding模型来计算第一个和第二个头部实体之间的相似度。

最终,我们还可以使用 networkx 这个Python 库,来实现图谱数据的可视化。

图片

图片

到目前为止,我们已经完成了使用 LLM 从原始文本数据中提取实体和关系的三元组,并自动构建知识图谱,甚至生成可视化图表。

<think>好的,我现在需要回答用户的问题:如何给大模型配置知识库。首先,我得先理解这个问题到底在问什么。用户可能想知道如何将外部的知识库整合到现有的预训练大模型中,比如像GPT这样的模型,使其在生成回答时能够利用这些额外的知识。可能的应用场景包括企业内部的文档问答、客服系统或者需要特定领域知识的任务。 接下来,我需要回忆一下现有的方法和技术。常见的做法包括微调模型、使用检索增强生成(RAG)、知识图谱结合、提示工程,以及基于向量数据库的检索等。我需要逐一分析这些方法的步骤、优缺点,以及适用场景。 首先,微调模型(Fine-tuning)。这是通过在特定领域的数据集上继续训练模型,使其适应特定任务。例如,用医学文献微调模型,让它在回答医学问题时更准确。但这种方法需要大量的标注数据,计算资源消耗大,且可能导致模型遗忘原有的通用知识。适用于有足够数据和计算资源的情况。 然后是检索增强生成(RAG)。这种方法结合了检索和生成,首先从外部知识库中检索相关文档,然后将这些文档作为上下文输入模型,生成回答。具体步骤可能包括构建向量数据库,使用如FAISS或Elasticsearch进行检索,然后将检索到的内容整合到模型的输入中。优点是实时更新知识库容易,不需要重新训练模型,但检索的准确性和上下文整合是关键挑战。适合需要动态更新知识库的场景。 知识图谱结合。将知识库构建知识图谱,模型生成时利用图谱中的结构化信息。需要构建和维护知识图谱,可能结合图神经网络。这种方法适合需要处理复杂关系和事实的应用,比如问答系统需要精确的关系推理。但构建和维护图谱成本较高,且如何有效整合到模型中也是个问题。 提示工程(Prompt Engineering)。通过设计特定的提示词,引导模型利用内置或外部知识。例如,在输入中加入“根据以下文档回答:...”然后附上相关文本。这种方法简单快捷,但受限于模型的上下文窗口长度,处理大量知识时效率低,适合小规模知识或临时性的需求。 基于向量数据库的检索。将知识库编码为向量,存入向量数据库,查询时进行相似度检索。例如使用Sentence-BERT生成嵌入,用Milvus或Pinecone存储。优点是高效检索,支持大规模知识库,但需要处理嵌入的质量和检索的准确性。 此外,还需要考虑知识库的构建和管理,包括数据清洗、格式化、索引优化等步骤。同时,实时更新、多模态知识库以及安全性和权限控制也是实际应用中需要考虑的问题。 现在需要将这些内容组织成一个结构化的回答,分步骤介绍不同的方法,并比较它们的优缺点,帮助用户根据具体需求选择合适的方法。同时,可能需要给出一些实际例子或工具推荐,比如Hugging Face的Transformers库、LangChain框架、FAISS等,让用户有更具体的参考。 需要确保语言简洁明了,避免过于技术化的术语,但又要准确传达关键点。可能还需要提到评估和优化,比如如何测试配置后的模型效果,调整检索策略或微调参数,以确保知识库的有效利用。 最后,检查是否有遗漏的方法或重要的注意事项,比如处理知识冲突(模型原有知识与新增知识的不一致)、计算资源限制、数据隐私等问题。这些也是实际配置知识库时需要考虑的因素。</think>为大型语言模型LLM)配置知识库,可以增强其回答的准确性和领域专业性。以下是常见方法和步骤,可根据需求选择合适方案: --- ### **一、核心方法** #### **1. 微调(Fine-tuning)** - **原理**:在特定领域数据上继续训练模型,使其“记住”新知识。 - **步骤**: 1. 收集并清洗领域相关文本(如PDF、网页、数据库)。 2. 将数据转换为模型训练格式(如问答对、长文本)。 3. 使用框架(如Hugging Face Transformers)进行微调。 - **优点**:模型直接内化知识,生成更专业。 - **缺点**:需大量计算资源,可能丢失通用能力。 - **工具**:Hugging Face、PyTorch。 #### **2. 检索增强生成(RAG, Retrieval-Augmented Generation)** - **原理**:实时从外部知识库检索信息,结合检索结果生成回答。 - **步骤**: 1. **构建向量数据库**: - 将知识库文本分块(如段落或句子)。 - 使用嵌入模型(如BERT、OpenAI Embeddings)转换为向量。 - 存入向量数据库(如FAISS、Milvus、Pinecone)。 2. **检索与生成**: - 用户提问时,检索相似内容作为上下文。 - 将“上下文+问题”输入模型生成答案。 - **优点**:无需重新训练模型,知识库可动态更新。 - **缺点**:依赖检索质量,上下文长度受限。 - **工具**:LangChain、LlamaIndex、Chroma。 #### **3. 知识图谱(Knowledge Graph)** - **原理**:将知识结构化存储为实体-关系三元组,辅助模型推理。 - **步骤**: 1. 构建知识图谱(如使用Neo4j、Apache Jena)。 2. 设计提示词或插件,指导模型查询图谱获取事实。 - **优点**:适合复杂关系推理,答案更精准。 - **缺点**:构建和维护成本高。 - **工具**:Neo4j、Amazon Neptune。 #### **4. 提示工程(Prompt Engineering)** - **原理**:直接在输入中插入知识文本作为上下文。 - **示例**: ``` 根据以下文档回答问题: [文档内容...] 问题:... ``` - **优点**:简单快捷,无需技术开发。 - **缺点**:受限于模型上下文长度(如GPT-4最大128k tokens)。 --- ### **二、关键步骤** 1. **知识库构建**: - 数据清洗:去重、过滤噪声、标准化格式。 - 分块与索引:按语义切分文本,优化检索效率。 2. **模型选择**: - 通用模型:GPT-4、Claude、LLaMA。 - 领域微调模型:BioBERT(医学)、LegalGPT(法律)。 3. **评估与优化**: - 测试问答准确率、检索相关性。 - 调整分块大小、检索策略(如关键词+向量混合检索)。 --- ### **三、场景建议** - **企业知识库问答**:推荐RAG + 向量数据库(低成本、易更新)。 - **医疗/法律专业场景**:微调 + 知识图谱(高精度需求)。 - **临时性需求**:提示工程直接插入上下文。 --- ### **四、注意事项** - **知识冲突**:外部知识可能与模型原有知识矛盾,需设计冲突解决策略。 - **多模态支持**:如需处理图片、表格,可结合多模态模型(如GPT-4V)。 - **安全与权限**:敏感知识需加密存储,控制访问权限。 通过以上方法,可灵活为LLM配置知识库,平衡成本、效果和实时性需求。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值