人工智能咨询培训老师叶梓 转载标明出处
大模型(LLMs)的微调过程中,计算资源的需求巨大,这促使研究者们探索参数高效微调(PEFT)技术。低秩适应(LoRA)和专家混合模型(MoE)的结合显示出了提升性能的潜力,但大多数现有方法只是简单地在MoE框架下用LoRA适配器替换专家,并且每一层都分配相同数量的专家。这种方法可能会导致一些问题,比如由于表示崩溃或学习到的路由策略过拟合,导致专家之间的冗余。来自美国西北大学、Mineral Research和Google DeepMind的研究人员提出了一种新颖的参数高效MoE方法,通过层级专家分配(MoLA)来优化Transformer模型的性能。
论文链接:https://arxiv.org/pdf/2402.08562
项目链接:https://github.com/GCYZSL/MoLA
方法
MoE-LoRA与层级分配(MoLA)的新方法不仅结合了LoRA和MoE技术,还通过智能的层级专家分配来优化模型。在这种方法中,不是给Transformer的每一层分配相同数量的专家,而是根据每一层的需求分配不同数量的专家。
Figure 1 展示了MoLA架构的总览。在这种架构下,LoRA-MoE被应用于预训练的Transformer模型,并且每个模型层可以采用不同数量的专家。在训练过程中,预训练的权重被冻结,只有LoRA专家被调整作为权重的适配器。这种设计允许模型在保持预训练权重不变的同时,通过调整LoRA专家来适应特定的任务或数据集。
在训练预训练的LLM时,不是将每个密集线性层的权重矩阵分解成一对低秩矩阵,而是创建多对低秩矩阵,每对称为一个LoRA专家。通过学习一个路由模块来为每个输入令牌指定不同的LoRA专家。对于具有m层的Transformer模型,为第j层分配Nj个专家,并有个专家总计。对于第j层模块