复旦团队发布DISC-LawLLM:智能法律服务,一键触达(开源)

 人工智能咨询培训老师叶梓 转载标明出处

想要掌握如何将大模型的力量发挥到极致吗?叶老师带您深入了解 Llama Factory —— 一款革命性的大模型微调工具(限时免费)。

1小时实战课程,您将学习到如何轻松上手并有效利用 Llama Factory 来微调您的模型,以发挥其最大潜力。

CSDN教学平台录播地址:https://edu.csdn.net/course/detail/39987

现有的法律人工智能系统大多专注于特定任务,缺乏广泛的法律推理能力和对复杂法律场景的支持。为了解决这一问题,复旦大学智能复杂系统研究中心的岳盛斌团队提出了一种名为 DISC-LawLLM 的智能法律系统,旨在通过大模型为用户提供全面的法律服务。该系统能够为法律专业人士、普通民众和法律学生提供多样化的法律服务,包括法律专业人士的工具(如法规检索、案例分析和文档总结)、普通民众的法律咨询(如法规解释和纠纷解决)以及法律学生的考试辅导。

图 1 展示了 DISC-LawLLM 在不同法律场景中的应用。例如,对于法律专业人士,系统可以提供法规检索、案例分析和文档总结等工具;对于普通民众,系统可以提供法律咨询和纠纷解决建议;对于法律学生,系统可以作为学习助手,帮助解答考试题目。图中还展示了具体的法律咨询案例,DISC-LawLLM 利用检索到的法规(如《民法典》和《招标法》)进行法律推理,最终得出结论。这体现了系统在法律推理和知识应用方面的强大能力。

然而,实现这一目标面临两大挑战:一是法律问题的复杂性要求模型具备强大的推理能力;二是法律知识的动态性要求模型能够实时获取和引用最新的法规和案例。为了解决这些问题,研究团队采用了法律三段论提示策略来构建监督式微调数据集,并引入检索模块以增强模型对法律知识的引用能力。通过这些方法,DISC-LawLLM 能够生成更可靠、更准确的法律建议。

表 1 展示了 DISC-Law-SFT 数据集的统计信息,该数据集包含两个子集:DISC-Law-SFT-Pair 和 DISC-Law-SFT-Triplet。数据集涵盖了法律要素提取、案例分类、文档总结、法律问题解答等多种任务,总计超过 40 万条样本。这些数据集通过法律三段论的结构(大前提、小前提和结论)对模型进行训练,使其能够按照法律推理的逻辑生成答案。

图 2 展示了 DISC-Law-SFT 数据集的构建流程。首先从公共法律任务数据集、法律原始文本和开源指令数据集中获取原始样本,然后通过规则化方法将数据转换为“输入-输出”对或“输入-输出-参考”三元组。为了增强模型的法律推理能力,研究团队采用了 行为塑造(Behavior Shaping)、知识扩展(Knowledge Expansion) 和 思维发展(Thinking Development) 三种方法,利用大模型对输出进行优化,使其符合法律三段论的逻辑结构。

图 3 展示了检索增强模块的工作原理。该模块基于开源检索框架构建,能够从包含 50 多个类别的中国法律知识库中检索与用户输入最相关的法规和案例。检索模块通过计算语义相似度,返回与用户输入最相关的文档,并将这些文档与用户输入一起输入到 DISC-LawLLM 中,从而增强模型对法律知识的引用能力。

图 4 展示了 DISC-Law-Eval 基准测试的整体框架,从客观和主观两个维度对智能法律系统进行评估。客观评估部分通过不同难度级别的多项选择题(包括单选和多选)来衡量模型的法律知识和推理能力,题目来源涵盖国家司法考试、专利代理人考试、注册会计师考试等。主观评估部分则通过高质量的问答案例,由 GPT-3.5 模型从准确性、完整性和清晰度三个维度对模型的回答进行评分,以评估其法律逻辑和回答质量。

本文设计了 DISC-Law-Eval 基准测试,从客观和主观两个维度对智能法律系统进行评估。表 2 展示了客观评估的结果,DISC-LawLLM 在多个法律标准化考试的多项选择题中表现优异,尤其是在难度较高的题目中,其准确率显著高于其他大模型,甚至优于拥有 1750 亿参数的 GPT-3.5-Turbo。表 3 展示了客观评估数据集的详细信息,包括不同难度级别的题目分布。

在主观评估部分,表 4 展示了 DISC-LawLLM 的表现。评估由 GPT-3.5 模型作为仲裁员,从准确性、完整性和清晰度三个维度对模型的回答进行评分。结果显示,DISC-LawLLM 在这些维度上均表现出色,尤其是在法律逻辑的严谨性和回答的清晰度上。

图 5展示了 DISC-LawLLM 在不同应用场景中的具体案例。例如,在法律专业人士工具方面,系统能够提取法律事件触发词并生成司法摘要;在法律咨询方面,系统能够提供关于债务分担和合同起草的建议;在考试辅导方面,系统能够解析法律考试题目并提供详细的法律解释。此外,检索增强模块能够结合最新的法律知识生成更准确的法律建议。

DISC-LawLLM的详细资源和代码已开源,可在以下链接中获取:GitHub - FudanDISC/DISC-LawLLM: [中文法律大模型] DISC-LawLLM: an intelligent legal system powered by large language models (LLMs) to provide a wide range of legal services.

技术报告:

https://arxiv.org/abs/2309.11325

主页地址:

https://law.fudan-disc.com

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能大模型讲师培训咨询叶梓

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值