np.random.beta();np.random.permutation()

只用来记录自己学习
np.random.beta:
参考https://www.cnblogs.com/kuangmeng/p/15727345.html
numpy.random.beta(a,b,size=None)
从β分布中提取样本。β分布是狄里克莱分布的一个特例,与伽马分布有关。
在这里我们将参数(3个参数)设置为32 32 3
参数1:32次正面。
参数2:32次反面。
参数3:总共进行3次。 按照惯例来说,我们正反面的次数一致的话,概率应该也是0.5。 在这里我们可以看到β分布下,概率值是0.5上下浮动的。
代码结果如下所示:

import numpy as np
r = np.random.beta(32.0, 32.0,3)
print(r)

运行结果 [0.474331 0.51380552 0.51413362]

np.random.permutation():
随机排列序列。

numpy.concatenate((a1,a2,…), axis=0):
能够一次完成多个数组的拼接。其中a1,a2,…是数组类型的参数
参考:https://blog.csdn.net/qq_35037684/article/details/107882261(记得看评论)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值