对象检测指标
让我们首先讨论一些指标,这些指标不仅对YOLO很重要,而且广泛适用于不同的目标检测模型。
- 并集交集 (IoU):IoU 是一种度量值,用于量化预测边界框和真实值边界框之间的重叠。它在评估对象定位的准确性方面起着基础性作用。
- 平均精度 (AP):AP 计算精确召回率曲线下的面积,提供封装模型精度和召回率性能的单个值。
- 平均精度 (mAP):mAP通过计算多个对象类的平均 AP 值来扩展 AP 的概念。这在多类对象检测方案中非常有用,可以对模型的性能进行全面评估。
- 精确度和召回率:精度量化所有正预测中真阳性的比例,评估模型避免假阳性的能力。另一方面,Recall 计算所有实际阳性中真阳性的比例,衡量模型检测类的所有实例的能力。
- F1 分数:F1 分数是精确率和召回率的谐波平均值,在考虑误报和漏报的同时,提供对模型性能的平衡评估。
如何计算YOLO模型的指标
使用验证模式很简单。一旦你有了经过训练的模型,你就可以调用 model.val() 函数。然后,此函数将处理验证数据集并返回各种性能指标。但这些指标意味着什么?你应该如何解释它们?