0.回顾一下RCNN
大家一般都是从RCNN开始了解Bounding Box Regression的,所以这里简单回顾一下RCNN
RCNN算法流程可分为4步:
1.一整图像生成1K~2K个候选区域(使用Selective Search方法)
2.对每个候选框区域使用深度网络提取特征
3.特征送入每一类的SVM分类器,判别是否属于该类
4.使用回归器精细修正候选框位置
这里我要说的就是RCNN的第四步,即“边界框回归”
主要围绕着这六个问题来解析Bounding Box Regression:
- 1.为什么要边框回归?
- 2.什么是边框回归?
- 3.边框回归细节
- 4.为什么使用相对坐标差?
- 5.为什么宽高比只能取对数?
- 6.为什么IoU较大时边界框回归可视为线性变换?
1.为什么要边框回归?
对于上图,绿色的框表示Ground Truth, 红色的框为Selective Search提取的Region Proposal。那么即便红色的框被分类器识别为飞机,但是由于红色的框定位不准(IoU<0.5), 那么这张图相当于没有正确的检测出飞机。 如果我们能对红色的框进行微调, 使得经过微调后的窗口跟Ground Truth 更接近, 这样岂不是定位会更准确。 确实,Bounding-box regression 就是用来微调这个窗口的。
2.边框回归是什么?
对于窗口一般使用四维向量
(
x
,
y
,
w
,
h
)
( x , y , w , h )
(x,y,w,h)来表示, 分别表示窗口的中心点坐标和宽高。 对于图 2, 红色的框 P 代表原始的Proposal, 绿色的框 G 代表目标的 Ground Truth, 我们的目标是寻找一种关系使得输入原始的窗口 P 经过映射得到一个跟真实窗口 G 更接近的回归窗口
G
^
\widehat{G}
G
。
边框回归的目的是:给定 ( P x , P y , P w , P h ) (P_x,P_y,P_w,P_h) (Px,Py,Pw,Ph)寻找一种映射f,使得 f ( P x , P y , P w , P h ) = ( G ^ x , G ^ y , G ^ w , G ^ h ) f(P_x,P_y,P_w,P_h)=(\widehat{G}_x,\widehat{G}_y,\widehat{G}_w,\widehat{G}_h) f(Px,Py,Pw,Ph)=(G x,G y,G w,G h)
并且 ( G ^ x , G ^ y , G ^ w , G ^ h ) ≈ ( G x , G y , G w , G h ) (\widehat{G}_x,\widehat{G}_y,\widehat{G}_w,\widehat{G}_h)\approx(G_x,G_y,G_w,G_h) (G x,G y,G w,G h)≈(Gx,Gy,Gw,Gh)
3.边框回归细节
RCNN论文里指出,边界框回归是利用平移变换和尺度变换来实现映射 。
平移变换 ( Δ x , Δ y ) 的计算公式如下: 平移变换(Δx,Δy) 的计算公式如下: 平移变换(Δx,Δy)的计算公式如下:
Δ
x
=
P
w
d
x
(
P
)
,
Δ
y
=
P
h
d
y
(
P
)
Δx=P_wd_x(P),Δy=P_hd_y(P)
Δx=Pwdx(P),Δy=Phdy(P)
G
^
\widehat{G}
G
x
=
P
x
+
Δ
x
_x=P_x+Δx
x=Px+Δx
G
^
y
=
P
y
+
Δ
y
\widehat{G}_y=P_y+Δy
G
y=Py+Δy
尺度变换 ( Δ w , Δ h ) 的计算公式如下: 尺度变换(Δ_w,Δ_h)的计算公式如下: 尺度变换(Δw,Δh)的计算公式如下:
Δ
w
=
e
(
d
w
(
P
)
)
,
Δ
h
=
e
(
d
h
(
P
)
)
,
Δw=e(dw(P)),Δh=e(dh(P)),
Δw=e(dw(P)),Δh=e(dh(P)),
G
^
\widehat{G}
G
w
=
P
w
∗
Δ
w
_w=P_w∗Δw
w=Pw∗Δw
G
^
h
=
P
h
∗
Δ
h
\widehat{G}_h=P_h∗Δh
G
h=Ph∗Δh
这样我们就得到了变换的一般形式:
G
^
x
=
P
x
+
P
w
d
x
(
P
)
\widehat{G}_x=P_x+P_wd_x(P)
G
x=Px+Pwdx(P)
G ^ y = P y + P h d y ( P ) \widehat{G}_y=P_y+P_hd_y(P) G y=Py+Phdy(P)
G ^ w = P w ∗ e d w ( P ) \widehat{G}_w=P_w∗e^{dw(P)} G w=Pw∗edw(P)
G ^ h = P h ∗ e d h ( P ) \widehat{G}_h=P_h∗e^{dh(P)} G h=Ph∗edh(P)
− − − − − − − − − − − − − − − − − − − ------------------- −−−−−−−−−−−−−−−−−−−
G x = P x + P w t x ( P ) G_x=P_x+P_wt_x(P) Gx=Px+Pwtx(P)
G y = P y + P h t y ( P ) G_y=P_y+P_ht_y(P) Gy=Py+Phty(P)
G w = P w ∗ e t w ( P ) G_w=P_w∗e^{tw(P)} Gw=Pw∗etw(P)
G h = P h ∗ e t h ( P ) G_h=P_h∗e^{th(P)} Gh=Ph∗eth(P)
也就是说,一个 d 对应着一个 t ,用 i 表示一张图片的序号:
d
i
→
t
i
d_i→t_i
di→ti
下一步就是设计算法得到这个映射 → 使 d 无限接近 t
根据上述公式可以推导出 t ∗
注意:当输入的Proposal 与 Ground Truth 相差较小时(RCNN设置的是IOU>0.6)可以认为这种变换是一种线性变换,那么我们就可以用线性回归模型对窗口进行微调,只有当Proposal和Ground Truth比较接近时(线性问题),我们才能将其作为训练样本训练我们的线性回归模型,否则会导致训练的回归模型不work(当Proposal跟Ground Truth离得较远,就是复杂的非线性问题了,此时用线性回归建模显然不合理)。这个也是G-CNN: an Iterative Grid Based Object Detector多次迭代实现目标准确定位的关键。
那么什么是线性回归?
线性回归就是给定输入的特征向量 X, 学习一组参数 W, 使得经过线性回归后的值跟真实值 Y(Ground Truth)非常接近.,即Y≈WX
那么这个映射关系中我们的输入以及输出分别是什么呢?
输入: R e g i o n P r o p o s a l 的 → P = ( P x , P y , P w , P h ) Region Proposal的→P=(P_x,P_y,P_w,P_h) RegionProposal的→P=(Px,Py,Pw,Ph)
输入的就是这四个数值吗?不!其实真正输入的是这个窗口对应的CNN特征,也就是R-CNN中的第五个池化层得到的特征向量 Φ 5 ( P ) Φ_5(P) Φ5(P),我们还要定义一个权重矩阵 w ∗ w^* w∗( ∗ * ∗表示x,y,w,h,也就是每一个变换对应一个目标函数)来表示这个目标函数 d ∗ ( P ) = w ∗ T Φ 5 ( P ) d*(P) = w*^TΦ_5(P) d∗(P)=w∗TΦ5(P)
利用梯度下降法或者最小二乘法就可以得到W*
最后一项是一个惩罚项,为了防止过拟合
在RCNN中,边界框回归要设计4个不同的Ridge回归模型分别求解
W
x
,
W
y
,
W
w
,
W
h
W_{x},W_{y},W_{w},W_{h}
Wx,Wy,Ww,Wh
输出: d x ( P ) , d y ( P ) , d w ( P ) , d h ( P ) d_x(P),d_y(P),d_w(P),d_h(P) dx(P),dy(P),dw(P),dh(P)
有了这四个变换我们就可以通过上面的公式得到
G
r
o
u
n
d
T
r
u
t
h
Ground Truth
GroundTruth,
注意,根据上面4个公式我们可以知道,P经过
d
x
(
P
)
,
d
y
(
P
)
,
d
w
(
P
)
,
d
h
(
P
)
dx(P),dy(P),dw(P),dh(P)
dx(P),dy(P),dw(P),dh(P),得到的并不是真实值G,
而是预测的
G
^
\hat{G}
G^
测试阶段
根据 3 我们学习到回归参数,对于测试图像,我们首先经过 C N N 提取特征
Φ
5
(
P
)
Φ 5 ( P )
Φ5(P) ,最后根据公式对窗口进行回归 预测的变化就是
d
∗
(
P
)
=
W
∗
T
Φ
5
(
P
d∗(P)=W∗TΦ5(P
d∗(P)=W∗TΦ5(P),最后根据公式对窗口进行回归
4.为什么使用相对坐标差?
一句话概括:进行尺度归一化。 一句话概括:进行尺度归一化。 一句话概括:进行尺度归一化。
5.式(4)为什么宽高比要取对数(为什么不直接使用宽高比值来作为目标进行学习)?
一句话概括:保证缩放尺度的非负性。 一句话概括:保证缩放尺度的非负性。 一句话概括:保证缩放尺度的非负性。
要得到一个放缩的尺度,这里必须限制尺度大于0。那么,我们学习的
t
w
,
t
h
t_w , t_h
tw,th
怎么保证满足大0呢?
最直观的想法就是引入EXP函数,如公式(4)所示,那么反过来推导就是Log函数的来源了。