@[TOC](第七章 相机坐标系中的Zc值求解(车道线感知))
一 前言
近期参与到了手写AI的车道线检测的学习中去,以此系列笔记记录学习与思考的全过程。车道线检测系列会持续更新,力求完整精炼,引人启示。所需前期知识,可以结合手写AI进行系统的学习。
二 推导 Z c Z_c Zc
像素坐标
转到世界坐标时相机坐标系中的Zc值求解
坐标转换参考:https://blog.csdn.net/weixin_44302770/article/details/133024739
求解具体过程:
前提是世界坐标的原点在地面上
上述公式可以简写为:
Z c [ u v 1 ] = K ( R [ X w Y w Z w ] + T ) Z_c\begin{bmatrix}u\\v\\1\end{bmatrix}=K(R\begin{bmatrix}X_w\\Y_w\\Z_w\end{bmatrix}+T) Zc uv1 =K(R XwYwZw +T)
进一步:
[ X w Y w Z w ] = R − 1 ( K − 1 Z c [ u v 1 ] − T ) = R − 1 K − 1 Z c [ u v 1 ] − R − 1 T \left.\begin{bmatrix}X_w\\Y_w\\Z_w\end{bmatrix}=R^{-1}\left(K^{-1}Z_c\begin{bmatrix}u\\v\\1\end{bmatrix}\right.-T\right)=R^{-1}K^{-1}Z_c\begin{bmatrix}u\\v\\1\end{bmatrix}-R^{-1}T XwYwZw =R−1 K−1Zc uv1 −T =R−1K−1Zc uv1 −R−1T
其中 R,K,T均为已知值。将上述等式中的变量做以下改写,方便描述:
M a t 1 = R − 1 K − 1 [ u v 1 ] , M a t 2 = R − 1 T Mat1=R^{-1}K^{-1}\Big[\begin{matrix}u\\v\\1\end{matrix}\Big],Mat2=R^{-1}T Mat1=R−1K−1[uv1],Mat2=R−1T
只观察世界坐标计算公式中等式两边的第三项,则:
Z w = Z c ∗ M a t 1 ( 2 , 0 ) − M a t 2 ( 2 , 0 ) Z c = ( Z w + M a t 2 ( 2 , 0 ) ) / M a t 1 ( 2 , 0 ) Z_w=Z_c*Mat1(2,0)-Mat2(2,0)\\\\Z_c=(Z_w+Mat2(2,0))/Mat1(2,0) Zw=Zc∗Mat1(2,0)−Mat2(2,0)Zc=(Zw+Mat2(2,0))/Mat1(2,0)
其中,Mat2(2,0)表示3×1矩阵的第三项。如果目标物体在地面则Zw=0;如果目标物体有一定高度,则Zw=实际物体高度,求出Zc后即可根据像素坐标求得世界坐标。
三 代码实现
import numpy as np
import cv2
def 2Dto3Dpts(point2D, rVec, tVec, cameraMat, height):
"""
将给定的2D点投影回真实世界的3D坐标系中
Args:
point2D (list): 包含2D点坐标的数组
rVec (numpy.ndarray): 旋转向量
tVec (numpy.ndarray): 平移向量
cameraMat (numpy.ndarray): 在solvePnP中使用的相机矩阵
height (float): 在真实世界3D空间中的高度
Returns:
output_array (numpy.ndarray): 3D点的输出数组,每个点为 (x, y, z) 坐标
"""
point3D = [] # 存储计算出的3D点
point2D = (np.array(point2D, dtype='float32')).reshape(-1, 2) # 将输入的2D点坐标转换为NumPy数组,并重塑为2列的矩阵
numPts = point2D.shape[0] # 获取2D点的数量
point2D_op = np.hstack((point2D, np.ones((numPts, 1)))) # 为每个2D点添加齐次坐标 (x, y, 1)
# 将旋转向量转换为旋转矩阵
rMat = cv2.Rodrigues(rVec)[0]
# 计算旋转矩阵的逆矩阵
rMat_inv = np.linalg.inv(rMat)
# 计算相机矩阵的逆矩阵
kMat_inv = np.linalg.inv(cameraMat)
for point in range(numPts):
uvPoint = point2D_op[point, :].reshape(3, 1) # 将2D点坐标扩展为列向量
tempMat = np.matmul(rMat_inv, kMat_inv) # 将旋转矩阵逆矩阵和相机矩阵逆矩阵相乘
tempMat1 = np.matmul(tempMat, uvPoint) # 将结果与2D点进行乘法运算
tempMat2 = np.matmul(rMat_inv, tVec) # 将旋转矩阵逆矩阵与平移向量相乘
s = (height + tempMat2[2]) / tempMat1[2] # 计算缩放因子
p = tempMat1 * s - tempMat2 # 计算3D点坐标
point3D.append(p) # 将计算出的3D点添加到列表中
point3D = (np.array(point3D, dtype='float32')).reshape([-1, 1, 3]) # 将3D点列表转换为NumPy数组,并重塑为正确的形状
return point3D # 返回计算出的3D点数组