基于脉振高频电压信号注入法的PMSM无位置传感器控制原理和仿真
相对于旋转高频电压信号注入法,脉振高频电压注入法只在估计的同步旋转d-q坐标系中的d轴上注入高频正弦电压信号,该信号在静止坐标系中是一个脉振的电压信号。
一、脉振高频电压激励下三相 PMSM 的电流响应
为了准确估计出电机的转子位置,首先建立估计转子同步旋转坐标系d-q与实际转子同步旋转坐标系d-q的关系,如图6-8所示。
在图中,a-β为两相静止坐标系,θ^e为估计的转子位置角,θe为实际的转子位置角。估计转子同步旋转坐标系d ^-q ^与实际转子同步旋转坐标系d -q之间的夹角θ~e为转子估计误差角:
重写同步旋转坐标系d-q中的高频激励下三相 PMSM的电压方程:
在同步旋转坐标系d-q中,电机定子电感可以表示为
在静止坐标系α-β中,上式转化为
则在估计转子同步旋转坐标系d-q中,高频电压和电流的关系为
将上式改写:
脉振高频电压注人法只在估计转子同步旋转坐标系à-q中à轴注人高频正弦电压信号:
其中:uin为高频电压信号的幅值,oin为高频电压信号的频率。
此时,高频电流可简化为
可以看出,如果』轴和q轴电感存在差异(AL≠0),则在估计转子同步速旋转坐标系中,d轴和q轴高频电流分量的幅值都与转子位置估计误差角6。有关。当转子位置估计误差角为零时,q轴高频电流等于零,因此,可以对q轴高频电流进行适当的信号处理后作为转子位置跟踪观测器的输入信号,以此获得转子的位置和速度。
二、转子位置估计方法
2.1、基于跟踪观测器的转子位置估计方法
为了获得转子的位置和速度,可先对q轴高频电流进行幅值调制,经低通滤波器(LPF)后得到转子位置跟踪观测器的输入信号,即
如果转子位置估算误差足够小,则可以把该误差信号线性化,即
其中:
从上式可以看出,如果调节f(θe)使之为零﹐则转子位置角估计误差也为零,即转子位置的估计值收敛到转子位置的实际值
采用脉振高频电压信号注入的无传感器控制系统结构框图如下图所示。在图中, T(θ^e)是将静止坐标系转换到旋转坐标系的变换矩阵,T '(θ ^e)为其逆矩阵;采用带通滤波器(BPF)提取包含转子位置信息的高频电流信号;使用低通滤波器(LPF)对上式进行滤波,以获得转子误差信息。为了获得电机的转速和转子位置信息,同样可以采用转子位置跟踪观测器方法,该方法的实现原理已经我的另一篇高频注入的文章进行阐述,此处不再赘述。
2.2、基于PLL的转子位置估计方法
除了采用转子位置跟踪观测器进行转子位置信息估计外,另一个常用的估计方法是基于PLL的转子位置估计方法,其控制框图如下图所示。
为了获得电机的转子位置角,采用PI调节器构成PLL系统,其控制框图如下图所示。其中,LPF滤波器采用期望带宽为o(这个符号不好表示看下式)的一阶低通滤波器形式,其传递函数可表示为:
PI 调节器的传递函数采用如下形式:
根据上图所示的控制框图,其闭环传递函数为:
经过极点配置得:
三、仿真(基于位置跟踪观测器而不是PLL)
*
3.1、速度环
3.2、电流环(两个都一样)
3.3、Inverter模块
其中subsystem2
3.4、PMSM(自己搭建,不是用的系统自带)
其中fcn1
其中fcn2
其中fcn3
其中参数值为:
3.5、观测器模块(observer)
3.6、滤波器模块
其中LPF为:
其中BPF为:
3.7、脉振高频电压注入模块
3.8、mod(取余模块)
四、仿真结果
4.1、实际转速与估计转速
4.2、实际转速与估计转速的误差
4.3、实际转子与估计转子
4.4、实际转子与估计转子的误差
五、结论
我不知道为啥明明转子跟踪很好,但是这个误差还是在0.3秒的时候一下子从0变成了6