心脏病分类预测--逻辑回归

本文介绍了如何运用逻辑回归算法预测心脏病。首先,分析了来自Kaggle的数据集,包括303个样本和14个特征。接着,详细阐述了逻辑回归的定义,并探讨了sklearn库中LogisticRegression模型的主要参数,如penalty(正则化选择)和solver(优化算法选择)。通过对参数的调整,可以应对过拟合问题并优化模型性能。
摘要由CSDN通过智能技术生成

一、问题背景

利用逻辑回归算法实现心脏病预测。

二、数据集分析

<
属性 含义
age 年龄
sex 性别 1=male,0=female
cp 胸痛类型(4种) 值1:典型心绞痛,值2:非典型心绞痛,值3:非心绞痛,值4:无症状
trestbps 静息血压
chol 血清胆固醇
fbs 空腹血糖 >120mg/dl ,1=true; 0=false
restecg 静息心电图(值0,1,2)
thalach 达到的最大心率
exang
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

weixin_44322234

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值