Learning from Noisy Anchors for One-stage Object Detection 论文阅读笔记

  • 这是CVPR2020的一篇论文

  • 当前的目标检测根据于GTbox的IOU把anchor标注为背景或前景类别的分类标签,使得一些不完善的label给训练带来了噪音,提高了训练难度。本文提供了一个 cleanliness score 作为一个soft label,并作为某些trick的权重,提高了目标检测的精度,在retinanet上涨点了2%的map
  • 分类的难度有一点原因是以下现象导致的:由于anchor的label是根据与GT的IOU大小确定的,所以当某个anchor与GT的IOU大于0.5时,也就是说只要目标的一部分进入anchor,就要求分类器把这个anchor分类为某个前景类别,而对于分类器来说可能只看到了这个目标的一部分而已,这就导致了训练的难度;
  • 这种anchor标注的方式可以说是不合理的,因为一个anchor包含部分是否是一个目标没有明显的界限,这和图像分类不同,一个目标是否出现是很明确的,而这里依靠出现的部分的大小比例,根据人设置的阈值,来粗暴地分割为是和否,是不合理的
  • 如图也可以明显感受到,根据IOU大小来确定一个anchor应该被分类为什么有时候是极其noisy和不合理的:
    在这里插入图片描述
  • 并且这种噪声给采样方法和Focal Loss带来更大的影响,因为他们导致很大的loss
  • 因此对于每个anchor,我们需要的不是一个label,而是一个score,能够衡量一个anchor被回归到正确位置和分类为正确标签的可能性,并且最好是网络自己产生的,连续的score而不希望是人为定义的。本文根据分类的score和localization的精确度来确定这个值。并且这个score将用来确定某个anchor在loss中的权重,从而降低noisy anchor的影响
  • 这个值的定义如下:
    在这里插入图片描述
  • 可见,score只对按原有方法归类为positive的anchor进行。这里的loc_a表示经过回归支路进行调整后的bbox与GTbox的IOU,cls_c表示分类输出(猜测是经过softmax或者sigmoid后的概率值,原文没有给代码无法判断)
  • 举个例子,原来的二分类损失如下:
    在这里插入图片描述
    其中t为1或0,但现在可以是0-1之间的一个离散值。
  • 同时,这个c可以用来当作focal loss的权重:
    在这里插入图片描述

在这里插入图片描述
其中,f为: f ( x ) = 1 1 − x f(x)=\frac{1}{1-x} f(x)=1x1
完整算法如下:
在这里插入图片描述

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
学习邻居一致性是一种用于处理噪声标签的方法。在现实中,数据集中的标签常常会受到一些错误或噪声的影响,这会对模型的训练和泛化能力造成不利影响。而学习邻居一致性则通过考虑样本的邻居关系来进一步提高模型的鲁棒性。 学习邻居一致性方法的核心思想是基于数据的局部性原理,即相似的样本倾向于具有相似的标签。该方法通过比较样本的标签,检测和修复噪声标签,并将不确定性信息引入模型训练过程中。 具体而言,学习邻居一致性方法会首先构建一个样本的邻居图,其中每个样本的邻居是根据特征相似性确定的。然后,该方法会使用邻居信息来计算每个样本的标签一致性得分。通过比较样本自身的标签和邻居的标签,可以有效地检测和纠正噪声标签。 在模型的训练过程中,学习邻居一致性方法会引入一个邻居一致性损失函数,用于最大化样本与其邻居的标签一致性得分。这样,模型会倾向于对邻居们的标签一致性进行学习,从而提高模型的鲁棒性和泛化能力。 总而言之,学习邻居一致性方法通过考虑样本的邻居关系来处理噪声标签。它通过检测和修正噪声标签,引入不确定性信息,并最大化标签一致性得分来提高模型的鲁棒性。这种方法在处理噪声标签方面具有一定的优势,并可在实际应用中取得良好的效果。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值