亚像素卷积的PixelShuffle

torch.nn.PixelShuffle()演示

import torch
import torch.nn as nn
r = 2  # 上采样倍率
PS = nn.PixelShuffle(r)  # 初始化亚像素卷积操作
x = torch.arange(3*4*9).reshape(1, 3*(r**2),3, 3)
print(f'*****************************************')
print(f'input is \n{x}, and size is {x.size()}')
y = PS(x)  #  亚像素上采样
print(f'*****************************************')
print(f'output is \n{y}, and size is {y.size()}')
print(f'*****************************************')
print(f'upscale_factor is {PS.extra_repr()}')
print(f'*****************************************')

运行结果为:
在这里插入图片描述

在这里插入图片描述

### 亚像素卷积的概念 亚像素卷积(Sub-pixel Convolution),也称为次像素卷积,是一种用于提高图像分辨率的技术。传统上,在超分辨率任务中,通常先通过最近邻插值或其他方法放大低分辨率图像尺寸,再利用卷积网络学习映射关系来优化高分辨率图像质量。然而,这种方法存在效率低下以及可能引入伪影的问题。 相比之下,亚像素卷积能够在单一步骤内完成特征提取与空间维度扩展的任务。具体而言,该操作会将输入张量中的通道数转换为空间位置的数量增加,从而有效地提升了输出图片的空间分辨率而无需显式的插值过程[^1]。 ```python import torch.nn as nn class SubPixelConv(nn.Module): def __init__(self, in_channels, out_channels, upscale_factor=2): super(SubPixelConv, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels * (upscale_factor ** 2), kernel_size=3, stride=1, padding=1) self.pixel_shuffle = nn.PixelShuffle(upscale_factor) def forward(self, x): x = self.conv(x) x = self.pixel_shuffle(x) return x ``` 这段代码展示了如何定义一个简单的亚像素卷积层,其中`nn.PixelShuffle`函数实现了从深层特征到更高分辨率表示的关键转变。 ### 应用场景 亚像素卷积广泛应用于计算机视觉领域内的多种任务: - 图像超分辨重建:这是最典型的应用之一,旨在从未知细节的低分辨率图像恢复出更清晰、细腻的版本; - 视频处理:包括视频帧率提升(FRUC),即通过对相邻两帧之间的差值估计生成中间帧以平滑播放效果;同时也可用于增强视频画质; - 图像风格迁移:当涉及到艺术滤镜或者特定样式渲染时,保持原有纹理的同时调整颜色分布成为必要条件,此时采用此技术可以更好地保留边缘信息并减少失真现象的发生。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值