20220620 uniformly completely observable (UCO)

本文介绍了时变线性系统(LTV系统)的概念,包括状态方程和输出方程,并定义了可观测性Gramian和统一完全可观测性。可观测性Gramian是评估系统能否通过输出数据确定其状态的矩阵,而统一完全可观测性则要求系统在所有时间点都具有良好的观测性。这些定义对于理解和分析动态系统的控制性能至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


LTV system

http://www.dem.ist.utl.pt/poliveira/Invest/IFACWC_17.pdf

Consider the LTV system given by
{ x ˙ ( t ) = A ( t ) x ( t ) + B ( t ) u ( t ) y ( t ) = C ( t ) x ( t ) \left\{\begin{array}{l} \dot{\mathbf{x}}(t)=\mathbf{A}(t) \mathbf{x}(t)+\mathbf{B}(t) \mathbf{u}(t) \\ \mathbf{y}(t)=\mathbf{C}(t) \mathbf{x}(t) \end{array}\right. {x˙(t)=A(t)x(t)+B(t)u(t)y(t)=C(t)x(t)
where x ( t ) ∈ R n , u ( t ) ∈ R m \mathbf{x}(t) \in \mathbb{R}^{n}, \mathbf{u}(t) \in \mathbb{R}^{m} x(t)Rn,u(t)Rm, and y ( t ) ∈ R p \mathbf{y}(t) \in \mathbb{R}^{p} y(t)Rp are the system state, input, and output, respectively, and A ( t ) ∈ R n × n \mathbf{A}(t) \in \mathbb{R}^{n \times n} A(t)Rn×n, B ( t ) ∈ R n × m \mathbf{B}(t) \in \mathbb{R}^{n \times m} B(t)Rn×m, and C ( t ) ∈ R p × n \mathbf{C}(t) \in \mathbb{R}^{p \times n} C(t)Rp×n are bounded continuous functions of time.


Concepts of observability Gramian and uniform complete observability

The following definitions introduce the concepts of observability Gramian and uniform complete observability for systems with bounded realizations Kalman (1960), Silverman and Anderson (1968), Jazwinski (1970), Silverman and Meadows (1967).

Definition 1

Definition 1. (Observability Gramian). The observability Gramian associated with the pair ( A ( t ) , C ( t ) ) (\mathbf{A}(t), \mathbf{C}(t)) (A(t),C(t)) on [ t 0 , t f ] \left[t_{0}, t_{f}\right] [t0,tf] is defined as
W o ( t 0 , t f ) : = ∫ t 0 t f ϕ T ( t , t 0 ) C T ( t ) C ( t ) ϕ ( t , t 0 ) d t \mathcal{W}_{o}\left(t_{0}, t_{f}\right):=\int_{t_{0}}^{t_{f}} \phi^{T}\left(t, t_{0}\right) \mathbf{C}^{T}(t) \mathbf{C}(t) \boldsymbol{\phi}\left(t, t_{0}\right) d t Wo(t0,tf):=t0tfϕT(t,t0)CT(t)C(t)ϕ(t,t0)dt
where ϕ ( t , t 0 ) \phi\left(t, t_{0}\right) ϕ(t,t0) is the state transition matrix associated with A ( t ) \mathbf{A}(t) A(t) from t 0 t_{0} t0 to t t t.

Definition 2

Definition 2. (Uniform complete observability). The pair ( A ( t ) , C ( t ) ) (\mathbf{A}(t), \mathbf{C}(t)) (A(t),C(t)) is uniformly completely observable (UCO) if there exist positive constants α > 0 \alpha>0 α>0 and δ > 0 \delta>0 δ>0 such that, for all t ≥ t 0 t \geq t_{0} tt0,
W o ( t , t + δ ) ⪰ α I \mathcal{W}_{o}(t, t+\delta) \succeq \alpha \mathbf{I} Wo(t,t+δ)αI

Definition 3

Likewise, the dual definitions for control are as follows. Definition 3. (Controllability Gramian). The controllability Gramian associated with the pair ( A ( t ) , C ( t ) ) (\mathbf{A}(t), \mathbf{C}(t)) (A(t),C(t)) on [ t 0 , t f ] \left[t_{0}, t_{f}\right] [t0,tf] is defined as
W c ( t 0 , t f ) : = ∫ t 0 t f ϕ ( t , t 0 ) B ( t ) B T ( t ) ϕ T ( t , t 0 ) d t \mathcal{W}_{c}\left(t_{0}, t_{f}\right):=\int_{t_{0}}^{t_{f}} \boldsymbol{\phi}\left(t, t_{0}\right) \mathbf{B}(t) \mathbf{B}^{T}(t) \phi^{T}\left(t, t_{0}\right) d t Wc(t0,tf):=t0tfϕ(t,t0)B(t)BT(t)ϕT(t,t0)dt
where ϕ ( t , t 0 ) \phi\left(t, t_{0}\right) ϕ(t,t0) is the state transition matrix associated with A ( t ) \mathbf{A}(t) A(t) from t 0 t_{0} t0 to t t t.

Definition 4

Definition 4. (Uniform complete controllability). The pair ( A ( t ) , B ( t ) ) (\mathbf{A}(t), \mathbf{B}(t)) (A(t),B(t)) is uniformly completely controllable (UCC) if there exist positive constants α > 0 \alpha>0 α>0 and δ > 0 \delta>0 δ>0 such that, for all t ≥ t 0 t \geq t_{0} tt0,
W c ( t , t + δ ) ⪰ α I \mathcal{W}_{c}(t, t+\delta) \succeq \alpha \mathbf{I} Wc(t,t+δ)αI

Finally, a vector norm inequality is introduced next. Let x ∈ R n \mathbf{x} \in \mathbb{R}^{n} xRn. Then,
∥ x ∥ ∞ ≤ ∥ x ∥ ≤ n ∥ x ∥ ∞ , \|\mathbf{x}\|_{\infty} \leq\|\mathbf{x}\| \leq \sqrt{n}\|\mathbf{x}\|_{\infty}, xxn x,
where ∥ x ∥ \|\mathbf{x}\| x and ∥ x ∥ ∞ \|\mathbf{x}\|_{\infty} x are the Euclidean and infinity norms of x \mathbf{x} x, respectively.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值