机器学习系列25-支持向量机

Support Vector Machine

支持向量机(SVM)有两个特点:SVM=铰链损失(Hinge Loss)+核技巧(Kernel Method)

注:建议先看这篇博客了解SVM基础知识后再看本文的分析

Hinge Loss
Binary Classification

先回顾一下二元分类的做法,为了方便后续推导,这里定义data的标签为-1和+1

  • f ( x ) > 0 f(x)>0 f(x)>0时, g ( x ) = 1 g(x)=1 g(x)=1,表示属于第一类别;当 f ( x ) < 0 f(x)<0 f(x)<0时, g ( x ) = − 1 g(x)=-1 g(x)=1,表示属于第二类别

  • 原本用 ∑ δ ( g ( x n ) ≠ y ^ n ) \sum \delta(g(x^n)\ne \hat y^n) δ(g(xn)=y^n),不匹配的样本点个数,来描述loss function,其中 δ = 1 \delta=1 δ=1表示 x x x y ^ \hat y y^相匹配,反之 δ = 0 \delta=0 δ=0,但这个式子不可微分,无法使用梯度下降法更新参数

    因此使用近似的可微分的 l ( f ( x n ) , y ^ n ) l(f(x^n),\hat y^n) l(f(xn),y^n)来表示损失函数

下图中,横坐标为 y ^ n f ( x ) \hat y^n f(x) y^nf(x),我们希望横坐标越大越好:

  • y ^ n > 0 \hat y^n>0 y^n>0时,希望 f ( x ) f(x) f(x)越正越好
  • y ^ n < 0 \hat y^n<0 y^n<0时,希望 f ( x ) f(x) f(x)越负越好

纵坐标是loss,原则上,当横坐标 y ^ n f ( x ) \hat y^n f(x) y^nf(x)越大的时候,纵坐标loss要越小,横坐标越小,纵坐标loss要越大

ideal loss

L ( f ) = ∑ n δ ( g ( x n ) ≠ y ^ n ) L(f)=\sum\limits_n \delta(g(x^n)\ne \hat y^n) L(f)=nδ(g(xn)=y^n)的理想情况下,如果 y ^ n f ( x ) > 0 \hat y^n f(x)>0 y^nf(x)>0,则loss=0,如果 y ^ n f ( x ) < 0 \hat y^n f(x)<0 y^nf(x)<0,则loss=1,如下图中加粗的黑线所示,可以看出该曲线是无法微分的,因此我们要另一条近似的曲线来替代该损失函数

square loss

下图中的红色曲线代表了square loss的损失函数: l ( f ( x n ) , y ^ n ) = ( y ^ n f ( x n ) − 1 ) 2 l(f(x^n),\hat y^n)=(\hat y^n f(x^n)-1)^2 l(f(xn),y^n)=(y^nf(xn)1)2

  • y ^ n = 1 \hat y^n=1 y^n=1时, f ( x ) f(x) f(x)与1越接近越好,此时损失函数化简为 ( f ( x n ) − 1 ) 2 (f(x^n)-1)^2 (f(xn)1)2
  • y ^ n = − 1 \hat y^n=-1 y^n=1时, f ( x ) f(x) f(x)与-1越接近越好,此时损失函数化简为 ( f ( x n ) + 1 ) 2 (f(x^n)+1)^2 (f(xn)+1)2
  • 但实际上整条曲线是不合理的,它会使得 y ^ n f ( x ) \hat y^n f(x) y^nf(x)很大的时候有一个更大的loss
sigmoid+square loss

此外蓝线代表sigmoid+square loss的损失函数: l ( f ( x n ) , y ^ n ) = ( σ ( y ^ n f ( x n ) ) − 1 ) 2 l(f(x^n),\hat y^n)=(\sigma(\hat y^n f(x^n))-1)^2 l(f(xn),y^n)=(σ(y^nf(xn))1)2

  • y ^ n = 1 \hat y^n=1 y^n=1时, σ ( f ( x ) ) \sigma (f(x)) σ(f(x))与1越接近越好,此时损失函数化简为 ( σ ( f ( x ) ) − 1 ) 2 (\sigma(f(x))-1)^2 (σ(f(x))1)2
  • y ^ n = − 1 \hat y^n=-1 y^n=1时, σ ( f ( x ) ) \sigma (f(x)) σ(f(x))与0越接近越好,此时损失函数化简为 ( σ ( f ( x ) ) ) 2 (\sigma(f(x)))^2 (σ(f(x)))2
  • 在逻辑回归的时候实践过,一般square loss的方法表现并不好,而是用cross entropy会更好
sigmoid+cross entropy

绿线则是代表了sigmoid+cross entropy的损失函数: l ( f ( x n ) , y ^ n ) = l n ( 1 + e − y ^ n f ( x ) ) l(f(x^n),\hat y^n)=ln(1+e^{-\hat y^n f(x)}) l(f(xn),y^n)=ln(1+ey^nf(x))

  • σ ( f ( x ) ) \sigma (f(x)) σ(f(x))代表了一个分布,而Ground Truth则是真实分布,这两个分布之间的交叉熵,就是我们要去minimize的loss
  • y ^ n f ( x ) \hat y^n f(x) y^nf(x)很大的时候,loss接近于0
  • y ^ n f ( x ) \hat y^n f(x) y^nf(x)很小的时候,loss特别大
  • 下图是把损失函数除以 l n 2 ln2 ln2的曲线,使之变成ideal loss的upper bound,且不会对损失函数本身产生影响
  • 我们虽然不能minimize理想的loss曲线,但我们可以minimize它的upper bound,从而起到最小化loss的效果
cross entropy VS square error

为什么cross entropy要比square error要来的有效呢?

  • 我们期望在极端情况下,比如 y ^ n \hat y^n y^n f ( x ) f(x) f(x)非常不匹配导致横坐标非常负的时候,loss的梯度要很大,这样才能尽快地通过参数调整回到loss低的地方

  • 对sigmoid+square loss来说,当横坐标非常负的时候,loss的曲线反而是平缓的,此时去调整参数值对最终loss的影响其实并不大,它并不能很快地降低

    形象来说就是,“没有回报,不想努力”

  • 而对cross entropy来说,当横坐标非常负的时候,loss的梯度很大,稍微调整参数就可以往loss小的地方走很大一段距离,这对训练是友好的

    形象来说就是,“努力可以有回报""

Hinge Loss

紫线代表了hinge loss的损失函数: l ( f ( x n ) , y ^ n ) = max ⁡ ( 0 , 1 − y ^ n f ( x ) ) l(f(x^n),\hat y^n)=\max(0,1-\hat y^n f(x)) l(f(xn),y^n)=max(0,1y^nf(x))

  • y ^ n = 1 \hat y^n=1 y^n=1,损失函数化简为 max ⁡ ( 0 , 1 − f ( x ) ) \max(0,1-f(x)) max(0,1f(x))
    • 此时只要 f ( x ) > 1 f(x)>1 f(x)>1,loss就会等于0
  • y ^ n = − 1 \hat y^n=-1 y^n=1,损失函数化简为 max ⁡ ( 0 , 1 + f ( x ) ) \max(0,1+f(x)) max(0,1+f(x))
    • 此时只要 f ( x ) < − 1 f(x)<-1 f(x)<1,loss就会等于0
  • 总结一下,如果label为1,则当 f ( x ) > 1 f(x)>1 f(x)>1,机器就认为loss为0;如果label为-1,则当 f ( x ) < − 1 f(x)<-1 f(x)<1,机器就认为loss为0,因此该函数并不需要 f ( x ) f(x) f(x)有一个很大的值

在紫线中,当 y ^ n f ( x ) > 1 \hat y^n f(x)>1 y^nf(x)>1,则已经实现目标,loss=0;当 y ^ n f ( x ) > 0 \hat y^n f(x)>0 y^nf(x)>0,表示已经得到了正确答案,但Hinge Loss认为这还不够,它需要你继续往1的地方前进

事实上,Hinge Loss也是Ideal loss的upper bound,但是当横坐标 y ^ n f ( x ) > 1 \hat y^n f(x)>1 y^nf(x)>1时,它与Ideal loss近乎是完全贴近的

比较Hinge loss和cross entropy,最大的区别在于他们对待已经做得好的样本点的态度,在横坐标 y ^ n f ( x ) > 1 \hat y^n f(x)>1 y^nf(x)>1的区间上,cross entropy还想要往更大的地方走,而Hinge loss则已经停下来了,就像一个的目标是”还想要更好“,另一个的目标是”及格就好“

在实作上,两者差距并不大,而Hinge loss的优势在于它不怕outlier,训练出来的结果鲁棒性(robust)比较强

Linear SVM
model description

在线性的SVM里,我们把 f ( x ) = ∑ i w i x i + b = w T x f(x)=\sum\limits_i w_i x_i+b=w^Tx f(x)=iwixi+b=wTx看做是向量 [ w b ] \left [\begin{matrix}w\\b \end{matrix}\right ] [wb]和向量 [ x 1 ] \left [\begin{matrix}x\\1 \end{matrix}\right ] [x1]的内积,也就是新的 w w w x x x,这么做可以把bias项省略掉

在损失函数中,我们通常会加上一个正规项,即 L ( f ) = ∑ n l ( f ( x n ) , y ^ n ) + λ ∣ ∣ w ∣ ∣ 2 L(f)=\sum\limits_n l(f(x^n),\hat y^n)+\lambda ||w||_2 L(f)=nl(f(xn),y^n)+λw2

这是一个convex的损失函数,好处在于无论从哪个地方开始做梯度下降,最终得到的结果都会在最低处,曲线中一些折角处等不可微的点可以参考NN中relu、maxout等函数的微分处理

对比Logistic Regression和Linear SVM,两者唯一的区别就是损失函数不同,前者用的是cross entropy,后者用的是Hinge loss

事实上,SVM并不局限于Linear,尽管Linear可以带来很多好的特质,但我们完全可以在一个Deep的神经网络中使用Hinge loss的损失函数,就成为了Deep SVM,其实Deep Learning、SVM这些方法背后的精神都是相通的,并没有那么大的界限

gradient descent

尽管SVM大多不是用梯度下降训练的,但使用该方法训练确实是可行的,推导过程如下:

another formulation

前面列出的式子可能与你平常看到的SVM不大一样,这里将其做一下简单的转换

L ( f ) = ∑ n max ⁡ ( 0 , 1 − y ^ n f ( x ) ) + λ ∣ ∣ w ∣ ∣ 2 L(f)=\sum\limits_n \max(0,1-\hat y^n f(x))+\lambda ||w||_2 L(f)=nmax(0,1y^nf(x))+λw2,用 L ( f ) = ∑ n ϵ n + λ ∣ ∣ w ∣ ∣ 2 L(f)=\sum\limits_n \epsilon^n+\lambda ||w||_2 L(f)=nϵn+λw2来表示

其中 ϵ n = max ⁡ ( 0 , 1 − y ^ n f ( x ) ) \epsilon^n=\max(0,1-\hat y^n f(x)) ϵn=max(0,1y^nf(x))

ϵ n ≥ 0 \epsilon^n\geq0 ϵn0 ϵ n ≥ 1 − y ^ n f ( x ) \epsilon^n\geq1-\hat y^n f(x) ϵn1y^nf(x)来说,它与上式原本是不同的,因为max是二选一,而 ≥ \geq 则取到等号的限制

但是当加上取loss function L ( f ) L(f) L(f)最小化这个条件时, ≥ \geq 就要取到等号,两者就是等价的

此时该表达式就和你熟知的SVM一样了:

L ( f ) = ∑ n ϵ n + λ ∣ ∣ w ∣ ∣ 2 L(f)=\sum\limits_n \epsilon^n+\lambda ||w||_2 L(f)=nϵn+λw2,且 y ^ n f ( x ) ≥ 1 − ϵ n \hat y^n f(x)\geq 1-\epsilon^n y^nf(x)1ϵn,其中 y ^ n \hat y^n y^n f ( x ) f(x) f(x)要同号, ϵ n \epsilon^n ϵn要大于等于0,这里 ϵ n \epsilon^n ϵn的作用就是放宽1的margin,也叫作松弛变量(slack variable)

这是一个QP问题(Quadradic programming problem),可以用对应方法求解,当然前面提到的梯度下降法也可以解

Kernel Method
explain linear combination

你要先说服你自己一件事:实际上我们找出来的可以minimize损失函数的参数,其实就是data的线性组合
w ∗ = ∑ n α n ∗ x n w^*=\sum\limits_n \alpha^*_n x^n w=nαnxn
你可以通过拉格朗日乘数法去求解前面的式子来验证,这里试图从梯度下降的角度来解释:

观察 w w w的更新过程 w = w − η ∑ n c n ( w ) x n w=w-\eta\sum\limits_n c^n(w)x^n w=wηncn(w)xn可知,如果 w w w被初始化为0,则每次更新的时候都是加上data point x x x的线性组合,因此最终得到的 w w w依旧会是 x x x的Linear Combination

而使用Hinge loss的时候, c n ( w ) c^n(w) cn(w)往往会是0,不是所有的 x n x^n xn都会被加到 w w w里去,而被加到 w w w里的那些 x n x^n xn,就叫做support vector

SVM解出来的 α n \alpha_n αn是sparse的,因为有很多 x n x^n xn的系数微分为0,这意味着即使从数据集中把这些 x n x^n xn的样本点移除掉,对结果也是没有影响的,这可以增强系统的鲁棒性;而在传统的cross entropy的做法里,每一笔data对结果都会有影响,因此鲁棒性就没有那么好

redefine model and loss function

知道 w w w x n x^n xn的线性组合之后,我们就可以对原先的SVM函数进行改写:
w = ∑ n α n x n = X α f ( x ) = w T x = α T X T x = ∑ n α n ( x n ⋅ x ) w=\sum_n\alpha_nx^n=X\alpha \\ f(x)=w^Tx=\alpha^TX^Tx=\sum_n\alpha_n(x^n\cdot x) w=nαnxn=Xαf(x)=wTx=αTXTx=nαn(xnx)
这里的 x x x表示新的data, x n x^n xn表示数据集中已存在的所有data,由于很多 α n \alpha_n αn为0,因此计算量并不是很大

接下来把 x n x^n xn x x x的内积改写成Kernel function的形式: x n ⋅ x = K ( x n , x ) x^n\cdot x=K(x^n,x) xnx=K(xn,x)

此时model就变成了 f ( x ) = ∑ n α n K ( x n , x ) f(x)= \sum\limits_n\alpha_n K(x^n,x) f(x)=nαnK(xn,x),未知的参数变成了 α n \alpha_n αn

现在我们的目标是,找一组最好的 α n \alpha_n αn,让loss最小,此时损失函数改写为:
L ( f ) = ∑ n l ( ∑ n ′ α n ′ K ( x n ′ , x n ) , y ^ n ) L(f)=\sum\limits_n l(\sum\limits_{n'} \alpha_{n'}K(x^{n'},x^n),\hat y^n) L(f)=nl(nαnK(xn,xn),y^n)
从中可以看出,我们并不需要真的知道 x x x的vector是多少,需要知道的只是 x x x z z z之间的内积值 K ( x , z ) K(x,z) K(x,z),也就是说,只要知道Kernel function K ( x , z ) K(x,z) K(x,z),就可以去对参数做优化了,这招就叫做Kernel Trick

Kernel Trick

linear model会有很多的限制,有时候需要对输入的feature做一些转换之后,才能用linear model来处理,假设现在我们的data是二维的, x = [ x 1 x 2 ] x=\left[ \begin{matrix}x_1\\x_2 \end{matrix} \right] x=[x1x2],先要对它做feature transform,然后再去应用Linear SVM

如果要考虑特征之间的关系,则把特征转换为 ϕ ( x ) = [ x 1 2 2 x 1 x 2 x 2 2 ] \phi(x)=\left[ \begin{matrix}x_1^2\\\sqrt{2}x_1x_2\\ x_2^2 \end{matrix} \right] ϕ(x)=x122 x1x2x22,此时Kernel function就变为:
K ( x , z ) = ϕ ( x ) ⋅ ϕ ( z ) = [ x 1 2 2 x 1 x 2 x 2 2 ] ⋅ [ z 1 2 2 z 1 z 2 z 2 2 ] = ( x 1 z 1 + x 2 z 2 ) 2 = ( [ x 1 x 2 ] ⋅ [ z 1 z 2 ] ) 2 = ( x ⋅ z ) 2 K(x,z)=\phi(x)\cdot \phi(z)=\left[ \begin{matrix}x_1^2\\\sqrt{2}x_1x_2\\ x_2^2 \end{matrix} \right] \cdot \left[ \begin{matrix}z_1^2\\\sqrt{2}z_1z_2\\ z_2^2 \end{matrix} \right]=(x_1z_1+x_2z_2)^2=(\left[ \begin{matrix}x_1\\x_2 \end{matrix} \right]\cdot \left[ \begin{matrix}z_1\\z_2 \end{matrix} \right])^2=(x\cdot z)^2 K(x,z)=ϕ(x)ϕ(z)=x122 x1x2x22z122 z1z2z22=(x1z1+x2z2)2=([x1x2][z1z2])2=(xz)2

可见,我们对 x x x z z z做特征转换+内积,就等同于在原先的空间上先做内积再平方,在高维空间里,这种方式可以有更快的速度和更小的运算量

RBF Kernel

在RBF Kernel中, K ( x , z ) = e − 1 2 ∣ ∣ x − z ∣ ∣ 2 K(x,z)=e^{-\frac{1}{2}||x-z||_2} K(x,z)=e21xz2,实际上也可以表示为 ϕ ( x ) ⋅ ϕ ( z ) \phi(x)\cdot \phi(z) ϕ(x)ϕ(z),只不过 ϕ ( ∗ ) \phi(*) ϕ()的维数是无穷大的,所以我们直接使用Kernel trick计算,其实就等同于在无穷多维的空间中计算两个向量的内积

将Kernel展开成无穷维如下:

把与 x x x相关的无穷多项串起来就是 ϕ ( x ) \phi(x) ϕ(x),把与 z z z相关的无穷多项串起来就是 ϕ ( z ) \phi(z) ϕ(z),也就是说,当你使用RBF Kernel的时候,实际上就是在无穷多维的平面上做事情,当然这也意味着很容易过拟合

Sigmoid Kernel

Sigmoid Kernel: K ( x , z ) = tanh ⁡ ( x , z ) K(x,z)=\tanh(x,z) K(x,z)=tanh(x,z)

如果使用的是Sigmoid Kernel,那model f ( x ) f(x) f(x)就可以被看作是只有一层hidden layer的神经网络,其中 x 1 x^1 x1~ x n x^n xn可以被看作是neuron的weight,变量 x x x乘上这些weight,再通过tanh激活函数,最后全部乘上 α 1 \alpha^1 α1~ α n \alpha^n αn做加权和,得到最后的 f ( x ) f(x) f(x)

其中neuron的数目,由support vector的数量决定

Design Kernel Function

既然有了Kernel Trick,其实就可以直接去设计Kernel Function,它代表了投影到高维以后的内积,类似于相似度的概念

我们完全可以不去管 x x x z z z的特征长什么样,因为用低维的 x x x z z z加上 K ( x , z ) K(x,z) K(x,z),就可以直接得到高维空间中 x x x z z z经过转换后的内积,这样就省去了转换特征这一步

x x x是一个有结构的对象,比如不同长度的sequence,它们其实不容易被表示成vector,我们不知道 x x x的样子,就更不用说 ϕ ( x ) \phi(x) ϕ(x)了,但是只要知道怎么计算两者之间的相似度,就有机会把这个Similarity当做Kernel来使用

我们随便定义一个Kernel Function,其实并不一定能够拆成两个向量内积的结果,但有Mercer’s theory可以帮助你判断当前的function是否可拆分

下图是直接定义语音vector之间的相似度 K ( x , z ) K(x,z) K(x,z)来做Kernel Trick的示例:

SVM vs Deep Learning

这里简单比较一下SVM和Deep Learning的差别:

  • deep learning的前几层layer可以看成是在做feature transform,而后几层layer则是在做linear classifier

  • SVM也类似,先用Kernel Function把feature transform到高维空间上,然后再使用linear classifier

    在SVM里一般Linear Classifier都会采用Hinge Loss

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值