机器人空间包络边界

本文探讨了机器人在三维空间中的运动包络边界问题,通过算法解析和编程实现(Python和Java),深入理解机器人的活动区域限制。结合LeetCode上的相关动态规划题目,提供了解决此类问题的思路和方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

function [T]=bianjie(a,b)
x=a'; y=b';
j=1;
ind_maxx=find(x==max(x));
ind_minx=find(x==min(x));
for i=unique(x)   %获得x的不同值    
    if  i==min(x)
         y1=y(ind_minx); %与该 x 对应的y值
         T01=[x(ind_minx)',y(ind_minx)'];
    else if i==max(x)
          y1=y(ind_minx); %与该 x 对应的y值 
         T02=[x(ind_maxx)',y(ind_maxx)'];
        else
            ind_x=(x==i);   % x 某一相同值的所有位置
            y1=y(ind_x); %与该 x 对应的y值
            y_max=max(y1);
            y_min=min(y1);  %获得y最大值和最小值
           T1(j,:) =[i, y_min];
           T2(j,:) =[i, y_max];    
           j = j+1;
        end
    end
end
 T2=flipud(T2);
T01=flipud(T01);
  T2(length(T2)+1,:)=[T01(1,1),T01(1,2)];
T=[T01;T1;T02;T2] ;
% 将曲线封闭


end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值