学习目标:
一、修改GAN+DDPM的代码
二、阅读GAN和DDPM相结合的论文
学习内容:
改了ViTGAN的代码
阅读了《Diffusion-GAN: Training GANs with Diffusion》论文
学习时间:
12.31-1.6
学习产出:
Diffusion-GAN: Training GANs with Diffusion
1、介绍
提出一种新的GAN架构——Diffusion GAN,将扩散过程设计为可微的,使得能够根据鉴别器的梯度更新生成器,并在判别器中加入噪声防止过拟合。
Diffusion-GAN由三部分组成:自适应扩散过程、扩散时间步长相关鉴别器和发生器。
2、工作
1、通过扩散注入噪声:定义一个混合分布q(y | x)对扩散过程获得的噪声样本进行建模,且每一个时间步t都有一个混合权重πt。
2、改进了GAN的目标函数,通过将鉴别器设计为可微的使得生成器能够相应进行更新。
3、自适应扩散:将时间步与鉴别器联系起来,扩散步长t越大,噪声越强,鉴别任务越难,为了控制扩散强度,可以自适应地修改最大步数T。
4、提出了两个定理对论文进行了有力的论证
3、结构
鉴别器的鉴别与加噪程度有关,鉴别器越过拟合噪声越强,而加噪与时间步有关,时间步越大噪声越强,因此
4、算法
5、结果
StyleGAN2和Diffusion StyleGAN2的比较
自适应时间步T和鉴别器
生成的图像