第十八周周报

Diffusion-GAN提出了一种新的架构,将扩散过程与GAN结合,通过可微的扩散过程优化生成器,并在鉴别器中引入噪声防止过拟合。该模型包括自适应扩散过程和时间步长相关的鉴别器。通过调整时间步长控制噪声强度,提高生成图像的质量。实验对比了StyleGAN2和DiffusionStyleGAN2的表现。
摘要由CSDN通过智能技术生成

学习目标:

一、修改GAN+DDPM的代码

二、阅读GAN和DDPM相结合的论文

学习内容:

改了ViTGAN的代码

阅读了《Diffusion-GAN: Training GANs with Diffusion》论文

学习时间:

12.31-1.6

学习产出:

Diffusion-GAN: Training GANs with Diffusion

1、介绍

提出一种新的GAN架构——Diffusion GAN,将扩散过程设计为可微的,使得能够根据鉴别器的梯度更新生成器,并在判别器中加入噪声防止过拟合。
Diffusion-GAN由三部分组成:自适应扩散过程、扩散时间步长相关鉴别器和发生器。

2、工作

1、通过扩散注入噪声:定义一个混合分布q(y | x)对扩散过程获得的噪声样本进行建模,且每一个时间步t都有一个混合权重πt。
2、改进了GAN的目标函数,通过将鉴别器设计为可微的使得生成器能够相应进行更新。
3、自适应扩散:将时间步与鉴别器联系起来,扩散步长t越大,噪声越强,鉴别任务越难,为了控制扩散强度,可以自适应地修改最大步数T。
4、提出了两个定理对论文进行了有力的论证

3、结构在这里插入图片描述

在这里插入图片描述
鉴别器的鉴别与加噪程度有关,鉴别器越过拟合噪声越强,而加噪与时间步有关,时间步越大噪声越强,因此
在这里插入图片描述

4、算法

在这里插入图片描述

5、结果

StyleGAN2和Diffusion StyleGAN2的比较
在这里插入图片描述
自适应时间步T和鉴别器
在这里插入图片描述
生成的图像
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值