一篇文章读懂大模型Function_call和Agent的联系与区别

本文探讨了function_call(函数调用)在AI模型中的作用,如执行任务时的决策过程,以及agent(代理)作为具备感知、决策和执行能力的智能整体。两者关系中,function_call是agent执行任务的关键手段,但agent概念更广泛,包含智能行为的多个环节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

1、function_call(函数调用)

function_call通常指的是模型调用特定函数的能力,这些函数可以是内置的,也可以是用户自定义的。在执行任务时,模型可能会通过分析问题来决定何时以及如何调用这些函数。例如,一个语言模型在回答数学问题时,可能会使用内部的计算函数来得出答案。function_call机制允许模型利用外部工具或内部功能来增强其处理特定任务的能力。

2、agent(代理)

在人工智能领域,“agent”(代理)通常指的是能够感知环境并采取行动以实现某个目标的实体。代理可以是一个智能机器人、一个虚拟角色,或者是一个程序、算法等。代理通过观察环境的状态,选择合适的动作来实现预定的目标。在大型模型中,"agent"可能指的是一个智能体(agent),它能够利用模型中的函数和数据来执行某种任务,例如基于语言模型的对话系统中的聊天机器人,它可以被视为一个代理。

简化理解

我们可以通过一些简化的比喻来理解function_call和agent这两个概念:

function_call的简化理解:

想象你正在使用一个智能手机。当你想要拍照时,你会打开相机应用。这个相机应用就是一个function_call,它提供了拍照的功能。你通过点击相机图标来“调用”这个功能,然后你可以拍照、编辑照片等。在这个比喻中,相机应用就是预定义的函数,而打开相机应用并使用其功能就是function_call。

agent的简化理解:

想象一个机器人管家。这个机器人能够理解你的指令,比如“请打扫客厅”,并且能够执行这个任务。机器人管家就是一个agent,它能够自主地感知环境(比如识别哪些地方是客厅),做出决策(比如决定打扫的顺序和方法),并执行任务(比如使用吸尘器打扫)。在这个比喻中,机器人管家是一个能够自主行动和做出复杂决策的实体。

总结来说,function_call就像是调用一个具体的功能或工具来帮助你完成特定的任务,而agent则更像是一个能够独立思考和行动的个体,它可以在没有人类直接指导的情况下完成一系列复杂的任务。

联系

在某些高级应用中,function_call 功能可以视为AI Agent的一种具体行动表现形式,即智能体在执行任务过程中调用外部资源或服务的一种策略。例如,一个具备Function Calling能力的AI Agent在进行对话或解决问题时,能动态地发起函数调用来获取额外的信息或执行特定的操作,从而更好地服务于用户需求。

区别

  • function_call 更侧重于表示模型直接产生调用函数的具体行为,是模型执行流程中的一个具体步骤或操作。
  • agent 则是一个更为宽泛的概念,代表的是具有智能行为的整体系统,它包括了感知、推理、决策以及执行等多个环节,而不仅仅是发起函数调用这一动作。

总结来说,function_call 是构建高效、智能Agent的重要组成部分,用于实现Agent对外部世界的操作接口和交互能力,而Agent则是包含了更多复杂逻辑和生命周期管理的完整实体。

### 关于豆包模型中的Function Call能力 在智能体应用构建中,尤其重视模型的工具调用能力即Function Call能力[^1]。对于Doubao系列模型而言,目前仅有Doubao-pro-4k以及Doubao-pro-32k两款支持此功能,在实际测试过程中发现lite版本处理较为复杂的案例时表现不佳因此未被纳入深入评测范围之内。 为了更好地理解这些具有Function Call特性的豆包模型如何运作,下面给出一段简化版Python代码用于展示怎样配置并利用这类模型执行特定任务: ```python from doubao_model import DoubaoModel # 假设这是加载豆包模型的方式 def prepare_function_call_model(model_name="doubao-pro-4k"): """ 准备指定名称的豆包函数调用模型 参数: model_name (str): 所需准备的具体豆包模型名,默认为'doubao-pro-4k' 返回: obj: 配置好的豆包模型实例对象 """ # 初始化选定型号的豆包模型 model_instance = DoubaoModel(name=model_name) # 设置工作模式至评估状态 model_instance.eval() return model_instance if __name__ == "__main__": # 创建一个具备function call能力的豆包pro-4k模型实例 func_call_model = prepare_function_call_model() ``` 上述代码片段展示了创建初始化一个名为`prepare_function_call_model()`的方法来设置给定名字下的豆包模型,并将其置于评估模式下以便后续操作。这只是一个基础框架,具体实现细节会依据应用场景个人需求有所不同。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值