叉积定义&从线性变换、对偶性角度看叉积(视频见b站)

本文深入探讨了二维和三维向量的叉积概念,强调其在确定平行四边形面积和遵循右手定则中的作用。同时,介绍了对偶性的概念,解释了如何将线性变换与向量点乘等价。通过定义三维到一维的线性变换,并找出其对偶向量,文章阐述了对偶向量与三维空间到一维空间变换的关系。此外,还提供了计算叉积的几何意义,将其视为向量在另一向量上的投影乘积。
摘要由CSDN通过智能技术生成

本文目的在于快速get核心点,视频请见:

【官方双语/合集】线性代数的本质 - 系列合集_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1ys411472E?p=11

【官方双语/合集】线性代数的本质 - 系列合集_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1ys411472E?p=12

二维向量的叉积(cross product)

方向看i\times j=+1

\vec{v}\times \vec{w}=\begin{vmatrix} \begin{bmatrix} \vec{v} & \vec{w} \end{bmatrix} \end{vmatrix}=\pm S(S为平行四边形面积)

三维向量的叉积(cross product)

 \vec{v}\times \vec{w}=\vec{p},其中\vec{p}的长度为\vec{v},\vec{w}构成面积的大小,方向满足右手准则(食指为\vec{v},中指为\vec{w},大拇指为\vec{p}

若直接从计算出发

\begin{bmatrix} v_{1}\\v_{2} \\ v_{3} \end{bmatrix}\times \begin{bmatrix} w_{1}\\w_{2} \\ w_{3} \end{bmatrix}=\begin{bmatrix} v_{2}\cdot w_{3}-w_{2} \cdot v_{3} \\ v_{3}\cdot w_{1}- w_{3}\cdot v_{1} \\ v_{1}\cdot w_{2} -w_{1}\cdot v_{2} \end{bmatrix}=\begin{vmatrix} \begin{bmatrix} i &v_{1} & w_{1}\\ j & v_{2} &w_{2} \\ k & v_{3} & w_{3} \end{bmatrix} \end{vmatrix} =i(v_{2}\cdot w_{3}-w_{2} \cdot v_{3})+j(v_{3}\cdot w_{1}- w_{3}\cdot v_{1})+k(v_{1}\cdot w_{2} -w_{1}\cdot v_{2} )

i,j,k表明要将括号中的数解读为坐标 

对偶性(duality)意味着:每当你看到一个(多维)空间到数轴的线性变换时,线性变换矩阵(1*m矩阵,m为原空间维数)都与那个空间中的唯一一个向量(dual vector)对应(即,应用线性变换和与这个向量点乘等价)。

\begin{bmatrix} v_{1}\\v_{2} \\ v_{3} \end{bmatrix}\times \begin{bmatrix} w_{1}\\w_{2} \\ w_{3} \end{bmatrix}=\begin{bmatrix} v_{2}\cdot w_{3}-w_{2} \cdot v_{3} \\ v_{3}\cdot w_{1}- w_{3}\cdot v_{1} \\ v_{1}\cdot w_{2} -w_{1}\cdot v_{2} \end{bmatrix}=\begin{vmatrix} \begin{bmatrix} i &v_{1} & w_{1}\\ j & v_{2} &w_{2} \\ k & v_{3} & w_{3} \end{bmatrix} \end{vmatrix} =i(v_{2}\cdot w_{3}-w_{2} \cdot v_{3})+j(v_{3}\cdot w_{1}- w_{3}\cdot v_{1})+k(v_{1}\cdot w_{2} -w_{1}\cdot v_{2} )

为了理解这个公式,总体计划如下:

1.根据\vec{v},\vec{w}定义一个三维到一维的线性变换

2.找到它的对偶向量

3.说明这个对偶向量就是\vec{v}\times \vec{w}

计算上讲(Computationally)

二维叉积\vec{v}\times \vec{w}=\begin{vmatrix} \begin{bmatrix} \vec{v} & \vec{w} \end{bmatrix} \end{vmatrix}这样表示 

那么三维叉积类推为\vec{u}\times \vec{v}\times \vec{w}=\begin{vmatrix}\begin{bmatrix} \vec{u} & \vec{v}&\vec{w} \end{bmatrix}\end{vmatrix},很明显这个不是真正的叉积,不过想法非常接近了。

如果将\vec{u}看作可变向量,有f(\begin{bmatrix} x\\y \\ z \end{bmatrix})=\begin{vmatrix} \begin{bmatrix} x &v_{1} & w_{1}\\ y&v_{2} & w_{2}\\ z& v_{3}& w_{3} \end{bmatrix} \end{vmatrix}(这个行列式其实就是体积)

根据行列式地性质,这个函数是线性的,就可以开始引入对偶思想:可以看出\begin{bmatrix} x\\y \\ z \end{bmatrix}\begin{vmatrix} \begin{bmatrix} x &v_{1} & w_{1}\\ y&v_{2} & w_{2}\\ z& v_{3}& w_{3} \end{bmatrix} \end{vmatrix}是三维空间到一维空间。那么f(\begin{bmatrix} x\\y \\ z \end{bmatrix})可以写成\begin{bmatrix} ? &? &? \end{bmatrix}\begin{bmatrix} x\\y \\ z \end{bmatrix},进而写成\begin{bmatrix} ?\\? \\ ? \end{bmatrix}\cdot \begin{bmatrix} x\\y \\ z \end{bmatrix}。如果未知向量用\vec{p}表示,可以写成\begin{bmatrix} p_{1}\\p_{2} \\p_{3} \end{bmatrix}\cdot \begin{bmatrix} x\\y \\ z \end{bmatrix},即p_{1}x+p_{2}y+p_{3}z =\begin{vmatrix} \begin{bmatrix} x &v_{1} & w_{1}\\ y&v_{2} & w_{2}\\ z& v_{3}& w_{3} \end{bmatrix} \end{vmatrix} =x(v_{2}w_{3}-v_{3}w_{2})+y(v_{3}w_{1}-v_{1}w_{3})+z(v_{1}w_{2}-v_{2}w_{1})

可得\vec{p}=\begin{pmatrix} p_{1}\\p_{2} \\ p_{3} \end{pmatrix}=\begin{pmatrix}v_{2}w_{3}-v_{3}w_{2} \\ v_{3}w_{1}-v_{1}w_{3}\\v_{1}w_{2}-v_{2}w_{1} \end{pmatrix}

几何意义上(geometrically)

 \begin{bmatrix} p_{1}\\p_{2} \\p_{3} \end{bmatrix}\cdot \begin{bmatrix} x\\y \\ z \end{bmatrix}可以看作是\vec{u}\vec{p}上的投影乘\begin{vmatrix} \vec{p } \end{vmatrix}(\begin{vmatrix} \vec{p } \end{vmatrix}也即底面积S)

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值