本文目的在于快速get核心点,视频请见:
【官方双语/合集】线性代数的本质 - 系列合集_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1ys411472E?p=11及
【官方双语/合集】线性代数的本质 - 系列合集_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1ys411472E?p=12
二维向量的叉积(cross product)
方向看
(S为平行四边形面积)
三维向量的叉积(cross product)
,其中
的长度为
构成面积的大小,方向满足右手准则(食指为
,中指为
,大拇指为
)
若直接从计算出发
表明要将括号中的数解读为坐标
对偶性(duality)意味着:每当你看到一个(多维)空间到数轴的线性变换时,线性变换矩阵(1*m矩阵,m为原空间维数)都与那个空间中的唯一一个向量(dual vector)对应(即,应用线性变换和与这个向量点乘等价)。
为了理解这个公式,总体计划如下:
1.根据定义一个三维到一维的线性变换
2.找到它的对偶向量
3.说明这个对偶向量就是
计算上讲(Computationally)
二维叉积这样表示
那么三维叉积类推为,很明显这个不是真正的叉积,不过想法非常接近了。
如果将看作可变向量,有
(这个行列式其实就是体积)
根据行列式地性质,这个函数是线性的,就可以开始引入对偶思想:可以看出到
是三维空间到一维空间。那么
可以写成
,进而写成
。如果未知向量用
表示,可以写成
,即
可得
几何意义上(geometrically)
可以看作是
在
上的投影乘
(
也即底面积S)