1、作用:
普通神经网络加上Dropout,防止过拟合
2、原理
Dropout是在训练的过程中,随机选择去除一些神经元,在测试的时候用全部的神经元,这样可以使得模型的泛化能力更强,因为它不会依赖某些局部的特征
class Dropout:
"""随机删除神经元
正向传播时,传递了信号的神经元,反向传播时按照原样传递信号
没有传递信号的神经元,反向传播时停止
机器学习中,常常采用!集成学习!:
多个模型单独进行学习,推理时再取多个模型的输出的平均值
droput作用:防止过拟合
droput原理:训练时去除一些神经元,在测试的时候用全部的神经元,这样可以使得模型泛化能力更强,因为它不会太依赖某些局部的特征
"""
def __init__(self, dropout_ratio=0.5):
self.dropout_ratio = dropout_ratio
self.mask = None
def forward(self, x, train_flg=True):
if train_flg:
self.mask = np.random.rand(*x.shape) > self.dropout_ratio
return x * self.mask
else:
return x * (1.0 - self.dropout_ratio)
def backward(self, dout):
return dout * self.mask