智能网联开发及测试技术动态

编写目的和简介

通过对智能网联汽车的国内外发展情况,技术路径应用现状以及智能车辆智能驾驶分级方法介绍,结合 ADAS 和 V2X 技术专项性能测试方法,试验测试场景建设等方面的分析研究,以测试方法实例,阐述并总结了智能网联车辆技术体系构成及相关测试工作原理和需求。

当前,智能网联汽车技术存在两条发展路径现状。一条是优先发展车载智能方向,有限布局基础设施;另外一条是智能汽车和智能道路协同发展的车路一体化路径。

当前国外大部分选择第一条技术路径,我国则更多的选择第二条技术路径,缘由在于充分利用我国在 5G 互联通信、道路基础设施等方面的优势,在大力发展智能车辆的同时,形成商业应用的模式,以此可以不断推动我国智能网联汽车和相关产业的发展,推进智能网联汽车更好地走进广阔市场。

本文对智能网联车辆技术路线及测试方法进行了综述,较为全面的分析了智能网联汽车技术架构及需要在相关安全性测试时考虑的因素。同时对智能网联汽车相关基础性概念、技术研究方案等做出比较详细的介绍,提供了有关方面的技术参考。

智能网联车辆测试分析

2.1环境感知和观察能力

智能汽车 ADAS 系统需求旺盛,作为其关键技术的感知传感器,其功能、性能及成本会直接影响 ADAS 发展。自车感知性能指的就是通过各类传感器获取周围环境信息的能力,当前 ADAS 测试系统常用的物理传感器包括超声波雷达、激光雷达、毫米波雷达、单机 / 立体摄像头、高精度数字定位地图等。上述各种传感器的优缺点如下方的表所示。

表 主要物理传感器的优缺点

对比单机/立体摄像头激光雷达毫米波雷达高精度数字定位地图超声波雷达
优点成本适中,可以分辨出障碍物的距离和大小,并能够识别行人和自行车等信息测距精度高,准确度强、方向性强,响应时间快,不受地面杂波干扰,成为应用最广泛的测量型感知传感器不受天气情况和夜间的影响,可以探测到远距离(100m以上)的物体帮助汽车进行匹配定位和自主路径规划,使驾驶系统可以感知到更大范围的交通势态,保证智能驾驶的安全结构简单,价格便宜且体积小巧
缺点与人眼一样会受到视野范围的影响成本很高,不能全天候使用,遇浓雾,雨雪天气无法工作,最好可以和摄像头互补使用成本较高,行人的反射波较弱,难以探测行人,最好可以和摄像头互补使用单独使用有时会出现延时的现象,数据传输精度有时不可靠受到天气和温度变化的影响较大,最大测量距离只有几米的范围

2.2先进驾驶辅助系统(ADAS)测试技术

高级驾驶辅助系统是一种基于 AI 算法来进行智能图像处理与分析的主动安全技术,它可以用来在紧急情况下提醒驾驶人员以避免发生车道偏离、车辆碰撞等潜在危险事故,由此增加车辆驾驶的安全性。

目前,随着智能车发展势头迅猛,能够支撑环境感知、决策预警和智能控制等核心功能及性能评估的先进驾驶辅助系统

(ADAS)测试标准体系正在进行建设并逐步成熟,同时针对 AEB、LKA 等系统设计了一系列的相关试验场景。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-cVBUS7yV-1670222843823)(media/5de3081ecfdc891907d87fdca74eae22.jpg)]、

图 ADAS研发测试工况

由上图可以看出,先进驾驶辅助系统测试工况包括 AEB、ACC、LKA、BSD 等 L1 级系统测试和 L2 级多系统横、纵向的组合测试,其中,AEB 系统是由试验场景规划的不同分为对静止目标车(CCRs)和对移动目标车(CCRm/CCRb)的测试,LDW 与 LKA 系统可以分为一定速度下的车道偏离测试和误警测试。下表为针对 ADAS 不同测试工况下的应用介绍。

表 ADAS技术不同测试工况下的应用

ADAS测试工况应用方面
自适应性巡航控制系统(ACC)可以实现对行驶车辆的主动加减速控制.从而与前车始终保持一定的安全距离,减小碰撞发生的几率
车道保持预警系统(LKA)车辆高速行驶的情况下,当通过传感器检测到车辆行驶方向偏离当前车道时,向驾驶员发出危险警告或者自动控制车辆的方向以保障其安全
紧急自动刹车系统(AEB)如果自车与前车距离过近,在驾驶员没有采取相应的紧急措施情况下,此系统可以使自车主动减速.即对车辆进行自动紧急制动,防止碰撞危险的发生或降低发生事故危险的程度
盲点检测功能系统(BSD)通过雷达传感器,检测行驶车辆的周围官区,避免潜在危险事故的发生

2.3 ADAS 系统测试设备

在车辆上搭载独立的具备高精度定位功能的数据采集系统和各类应用传感器,可以对自车车行数据和目标车车行数据进行实时同步采集。常用的 ADAS 系统测试工具装置如图 2 所示。

由下图可以看到,在 ADAS 性能试验和智能驾驶系统技术的研究中,现用的主要测试设备包括,如下图(b)ABD SR60 驱动机器人(包括转向、换挡、制动油门组合机器人)和车载数据处理器、如下图(d)英国的 RT 3002 基站(高精度陀螺仪)、如下图(e)油门 / 制动加速器组合机器人,上述设备均安装在如下图(c)所示的自车装置内。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Pb3dxvp3-1670222843824)(media/9cd47ac6ba76296e9896e83bf997a09b.jpg)]

图2 ADAS系统测试设备及装置

其中,英国 ABD 转向机器人和相应的基站设施可以实现对试验车辆行驶轨迹的精确控制,油门 / 制动加速器组合机器人实现对车速的精确控制,双总线通讯模块 RT-range 装置可以实现对测试车与目标车的车速、相对距离和减速速度的有效控制,进而能够有效的控制碰撞时间 TTC 的采集精度,满足试验测试精度的要求。

为了保证试验研究的安全,必须采用符合要求的气球车,目前该测试设备主要依赖于由德国进口的已通过欧洲(Euro)-NCAP 认证的目标气球车,如图 2(a)所示。

另外,在车辆内部还可以搭载 RTK 实时动态定位仪器装置,使用 GPS 的载波相位观察测量,并且利用移动站和参考站之间观测误差的空间相关性,采用差分的方式消除移动站观测数据中的大部分误差,从而实现高精度定位。

通过与高精度地图技术的相互配合,车载 RTK 技术能够在中短基线的情况下实现 5 cm 以内精度的定位,并通过双天线定向板卡做到精确的监测汽车自身的位置、姿态及周围路况信息。

这对于智能驾驶车辆汽车实现全局路径规划,先见性预测以及车辆本身的精确控制均有很大的帮助,同时也在最大程度上避免了急刹车,急加速及其他众多复杂且具有潜在危险的交通事故的发生。

ADAS 测试方法实例

选取紧急自动刹车(AEB)测试工况作为典型实例,对其测试方法进行分析,其动态试验场景如图 3 所示,该场景主要用于评价主车对于前方静止车辆或减速车辆的识别能力和在紧急情况下的车辆自动安全制动功能。

试验过程中,两车位于相同车道并加速,且主车车头距离目标车车尾 150 m 时,试验正式开始。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Oas0BwDt-1670222843824)(media/065fbeb1a3f773d60fd71b9cb2e434d7.jpg)]

图 AEB动态试验场景图

试验的具体实施方法如下,其中(1)~(3)为目标车匀速状态下的测试,(4)为目标车变速状态下的测试。

  1. 目标车在试验道路中间,以 30 km/h 的匀速行驶或者以 40 km/h 的初速度进行加速度± 4 m/s2 变速行驶;
  2. 主车分别以 70 km/h、60 km/h、50 km/h 的匀速行驶;
  3. 主车逐渐接近目标车,两车间距 150 m 时开始记录试验数据,直到主车自动减速并在保持一定距离下跟随目标车后行驶,则试验结束;
  4. 在目标车变速行驶过程中,主车先减速并稳定跟随目标车行驶 2 s 后,目标车开始变速行驶。主车根据目标车的车速自动调节自身车速,并保持与目标车相对纵向位置不变,直至目标车减速为零,主车自动跟停,则试验结束。

此项试验的判定方法为:当主车可以随着目标车的速度情况进行变速行驶,并保持与目标车有一定的距离,最后可以跟随目标车减速为零,同时在试验过程中,由主车与目标车的车距和相对车速获得的碰撞时间 TTC 的数值满足相应的指标要求,则试验结论为通过。

V2X 车联网系统测试技术

智能网联汽车除了依靠本车的物理传感器实现周边状态的感知外,还能够通过基于车联网的 V2X 通信技术来获知周边更大范围内的其他车辆环境和道路交通状况信息,做到更高程度的自动化与智能化。

可以说,虽然在实际应用的准确性方面 ADAS 拥有一定的优势,但是 V2X 技术可以很好的解决 ADAS 技术没有处理好的视线范围问题。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-cbuqSFSe-1670222843825)(media/477c165b8d109884b8a5ea07e87d5a4b.jpg)]

图V2X车联网系统技术架构

V2X 车联网技术系统架构如图 4 所示,可以看出,V2X 车联网系统由数据管理系统、车载系统和路测系统三个基础系统组成,且三者之间可以实现相互通信。其中,路测系统包括路测通信系统、传感器检测系统、交通信息控制系统,车载系统包括车载定位系统、车载通信系统、车载诊断系统。

V2X 通信传感系统作为一种主动安全技术,一方面通过 V2V、V2I 等通信技术获得道路交通状态和其他车辆以及交通参与者的信息,另一方面可以将本车的相关操纵状态信息发给其他车辆和其他交通参与者,它可以使汽车获取更大范围的感知能力,发现潜在的安全风险,并且优化路径规划。

总体来说,该技术就是基于车 - 车、车 - 路、车 - 人、车 - 后台的通信,实时并可靠的获取车辆周边交通环境信息及车辆决策信息,形成车 - 车、车 - 路等各交通参与者之间的联网协同决策与控制。汽车网联化的等级划分[17]如下方的表所示。

表 汽车网联化的等级划分

等级名称等级定义控制典型信息传输需求
1网联辅助信息交互基于车-路、车-后台通信,实现导航等辅助信息的获取以及车辆行驶与驾驶员操作等数据的上传地图、交通流量、交通标志、油耗里翟等信息传输实时性、可靠性要求较低
2网联协同感知基于车-车、车-路、车-人、车-后台通信,实时获取车辆周边交通环境信息,与车载传感器的感知信息融合,作为自车决策与控制系统的输人人和系统周边车辆/行人/非机动车位置、信号灯相位、道路预警等数据信息传输实时性、可靠性要求较高
3网联协同决策与控制基于车-车、车-路、车-人、车-后台通信,实时并可靠的获取车辆周边交通环境信息及车辆决策信息,车-车、车-路等各交2通参与著之间信息进行交号控制人和系统车-车、车-路之间的协同控制信息传输实时性、可靠性要求最高

如下图为 V2X 系统测试设备示意图,V2X 系统测试与 ADAS 系统测试方法类似,目前基于车联网 V2X 技术的协同式驾驶辅助

技术正在进行实用性技术开发和一定规模的仿真设计以及试验场景测试,智能网联车辆安全运行测试管理规范也在进行相应的制定。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-U9KMyPXz-1670222843825)(media/8df842e553b10b4c6339082b150f88b4.jpg)]

图V2X系统测试设备及装置示意图

另外,目前的民用智能网联车辆主要进行 5G 定位系统的开发,利用它可以基本做到实时精确且可靠的车道定位、车辆的状态行为以及路况等信息的采集,避免重大交通事故的发生。当前的无人驾驶必须建立在 5G 通讯网络的情况下才可以实现,这是车联网的必要条件,相应道路需要实现 5G 信号全覆盖。

进一步来说,主车周围的目标车将各自所在的位置信息上传到 5G 互联网络,主车进而接收到他们的位置信息并回传自身的信息状态,然后电脑根据获得的数据自主判断并制定下一步的行驶方案。总体来讲,随着 5G 技术的大力推进和应用,V2X 技术以及智能网联汽车产业也会随之不断快速的创新发展。

智能网联车辆技术架构与路线分析

图 6 和图 7 分别表示为智能网联汽车技术架构和测试流程结构框架图,可以看到,智能网联车辆的测试主要包括安全性测试和一般专项性能测试两方面,其中,安全性测试包括针对功能安全性和信息安全性的测试,且二者均需要进行硬件在环测试。

即对智能网联汽车系统及零部件的测试,可以说,功能安全和信息安全是智能网联汽车安全问题的核心技术难点,直接影响着智能网联汽车的未来市场前景和发展。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FH9mbz6h-1670222843825)(media/9140b3625fb230044b738fecb42547d4.jpg)]

图 智能网联汽车技术架构

智能网联车辆可以自主操纵油门和制动、方向(转向)及挡位等信息,并且可以实时监测车辆行驶的数据状态,操作方便也更加精确,汽车智能化技术的进步必然会让交通事故死亡率得到显著下降。

智能驾驶汽车具有自身的特点,主要表现为其对环境更为敏感,对周围物理状态的把握相比较驾驶人员更准确,但是智能网联汽车车辆还缺乏像人类驾驶员一样的灵活应变能力。

另外,当前存在两种智能网联汽车的研发技术路线,二者的导向与本质是不同的。以传统车企为主的 ADAS 升级路线,即以如上图中的车辆共性关键技术作为切入点,经测试评价逐步增加驾驶中的自动处理技术项目来提升车辆的安全性,其本质在于车辆功能的发展与辅助功能的增加,为客户提供更好的体验。

以互联网企业为主导的无人驾驶路线,即以如上图中的信息交互关键技术作为切入点,经过相关测试评价,如下图所示,从特定环境下的智能驾驶逐步切入到全区域条件下的高度智能驾驶,其本质在于基于 AI 领域的探索创新从而实现移动式的服务机器人。

请添加图片描述

图 智能网联汽车测试流程结构框架

智能网联车辆测试场景库的建设

如何衡量自动驾驶车辆的能力,回答这个问题需要构建自动驾驶测试与评价体系,通过指标化的评价项目来全面系统评价自动驾驶能力,指导自动驾驶车商用量产工作。

请添加图片描述

图 自动驾驶测试与评价体系

6.1测试场景库

自动驾驶的实验室环境测试、车辆在环测试以及实际道路测试都是以场景库为基础,通过对选取特定场景进行测试,获得具体场景对应测试数据,从而进行分析。因此自动驾驶测试场景是自动驾驶的基础,能为自动驾驶能力提供有效验证,为自动驾驶车辆上路提供主要的依据。在自动驾驶快速发展的情况下,确立自动驾驶场景库的标准十分迫切。

场景库应包含各种类型,各种维度,涵盖主要典型场景和各种极端场景,如不同道路类型等级、交通标志和标线识别、天气状况、障碍物识别与应对、人机交互、最小风险状态等。

6.2自动驾驶测试体系

自动驾驶测试体系可以分为“实验室阶段测试”“车辆在环测试”“道路在环测试”三大部分。

请添加图片描述

图 自动驾驶测试体系

6.3实验室环境测试

实验室阶段测试目的是在离线情况下完成对自动驾驶系统的测试,包括模型的训练评估、各软件模块的测试、仿真测试、集成测试、硬件测试、硬件在环测试等。实验室阶段测试的特点是利用计算机在实验室环境下进行低成本快速大量的测试分析,检验软件和硬件系统的功能情况、可靠性、资源占用情况等,从而为后续车辆在环测试和道路在环测试节省成本和时间,提高测试质量和效率。

1)软件在环测试(SIL)

在自动驾驶阶段,不仅仅是控制模块,还涉及更多的软件模块,例如感知模块、定位模块、决策规划模块、高精地图模块等,每一个模块都需进行在环测试。传统软件在环工具无法解决这个问题,因此在自动驾驶阶段,软件在环的关键工具是一个离线仿真系统,可以同时离线访问每个模块并实时生成车辆状态反馈。

软件在环测试是利用计算机和各种系统工具,针对自动驾驶系统不同模块算法进行的测试。其目的是测试自动驾驶系统不同模块算法运行状况、模块功能、集成情况、资源占用等,并对各种场景进行仿真测试。软件在环测试是后续测试阶段的先决条件。通过软件在环测试,可以加快算法迭代,在前期能够快速发现问题解决问题,从而节省研发时间和成本,提高开发效率。

2)硬件在环集成测试HIL

硬件在环集成测试技术(HIL)是自动驾驶车集成测试阶段一项重要测试技术。它介于模块测试和真实道路测试之间,在自动驾驶车测试链条当中起到承前启后的重要作用。硬件在环集成测试在试验室搭建出一个半实物仿真的测试平台,搭建尽量接近真实道路的行车环境。相比于软件仿真器测试平台,硬件在环测试技术能在自动驾驶车系统集成的角度,实现前端传感器的硬仿真介入。在实现前端可控传感器仿真的基础上,HIL测试能够测试覆盖到自动驾驶车系统中的多个主要模块,包含预处理、感知、定位、决策控制等部分。以数据驱动方式组织的集成链条测试,可以真正打通端到端的自动驾驶车离线测试能力。以真实道路测试记录的数据为基础,通过HIL测试技术还原场景,将被测系统放置于接近真实物理世界的测试环境中去,实现了虚拟场景仿真到全传感器仿真场景的突破。

6.4车辆在环测试

车辆在环测试(VIL)基于半实物仿真技术思想,是真实车辆和虚拟仿真的联合测试系统。例如可以实现在一个封闭场地内实现任意开放道路的集成测试,实现大部分的真实测试需求,并能对2D、3D感知环境进行精确仿真控制。VIL在封闭场地内最大限度还原开放道路的场景,降低了实际道路测试风险性,降低测试的成本和时间。具体来说,VIL测试具有如下特点:

  • 实现快速的场景及驾驶测试;
  • 高效地验证各控制器的功能;
  • 降低实车测试的难度和风险;
  • 减少交通事故和风险;
  • 减少对场地、真实交通和试验车辆的需求。

6.5道路在环测试

1)封闭测试场测试

自动驾驶车辆在上路之前需首先在封闭测试场完成各种场景测试。封闭测试场测试的目的在于检测自动驾驶车辆的基本功能和软硬件系统运行情况,并进行简单基础场景的测试如直行、转向、红绿灯识别等。封闭测试场测试可以及早发现自动驾驶系统和车辆基本功能等方面的问题,避免进入开放道路测试出现事故,从而降低风险,同时节省时间和成本。

2)半开放道路测试

在进入开放道路测试之前,自动驾驶车辆还需要在半开放道路上进行测试。所谓半开放道路是指有可控的规模有限的社会车辆和行人通过的道路。一般选取车速较低、交通密度较低的园区作为半开放道路,其中有社会车辆和行人通过但流量可控,相比实际开放道路场景要简单。部分半开放道路包括工业园区、有一定规模的驾校、区域测试场等。

3)开放道路测试

开放道路是指社会车辆和行人通行的道路,场景随机多变,交通状况复杂。开放道路测试是道路在环测试的最终环节,也是自动驾驶车辆完成测试经过的必要环节。开放道路测试可以更加全面真实地测试自动驾驶车辆在各种复杂场景状况下的运行状况以及对于危机情况的化解,对车辆的运行、系统工作情况、各模块功能、体感等各维度进行综合测试。

6.6评价标准

1.仿真环境

仿真测试,是指对自动驾驶系统在计算机里进行虚拟场景的测试。仿真测试目的在于测试自动驾驶系统在各种虚拟场景下的感知、决策和控制能力。通过仿真测试能够复现实际情况下各种可能场景,从而测试自动驾驶系统的决策控制能力,发现问题,避免问题进入后续测试环节,从而降低风险提高开发效率,是自动驾驶车辆安全上路的必要条件。仿真环境测试阶段评价指标分为定位、感知、预测、决策规划和控制5个方面,每个方面包含具体的测试指标。

2.道路测试

道路测试指标主要分为环境感知能力、执行能力、紧急处置能力和综合驾驶能力,具体分为26个测试指标,依据《北京市自动驾驶车辆道路测试能力评估内容与方法》规定测试指标。

3.体感

在自动驾驶过程中,乘客是重要的一部分,乘客的舒适度同样是评价自动驾驶水平重要的指标,因此在自动驾驶评价体系中应当建立体感指标的评价体系。在车辆行驶过程中,影响乘客舒适度的因素主要包括纵向加速度,纵向加速度的变化率,横摆角速度,横摆角速度的变化率,曲率以及曲率变化率等。

6.7国内外道路测试场

随着智能网联汽车的发展,无论仿真实验情景多么复杂,也无法代替真实的路测。作为评价和检验汽车质量和性能的测试场,也需要成为发展的重点。智能网联汽车测试场不同于传统汽车测试场,智能网联汽车需要在专属的场地测试,应当具备丰富的场景,完善的测试功能以及通行能力,试验做到保密,测试数据可靠等,测试重点是考核车辆对交通环境的感知和应变能力。

美国、欧盟、日本等汽车工业发达的国家和地区都纷纷开展智能网联汽车测试示范区建设,包括美国的M-City,瑞典AstaZero、英国Mira City Circuit、西班牙IDIADA升级建造的测试场日本JARI改造建设的测试场等。

国内针对智能网联汽车测试场的建设仍处于摸索阶段,目前主要集中在北京、上海、重庆等地。

试验场景的构建分为实车动态场景组合构建和静态场景组合构建。图 8 为测试场景库构建图,可以看到,场景的提炼及分类主要是基于动态场景组合(如机动车辆、非机动车辆和行人等)和静态场景组合(如天气、光线、树林、壕沟、电磁环境等)两方面内容。

请添加图片描述
图 测试场景模型构建流程

如上图为测试场景模型构建流程图。测试场景设计构建的基本要素包括道路环境要素、天气与光照环境、交通信号识别、工作条件等内容,同时基于车辆的机动性、安全性等不同方面的内容可以扩展许多试验场景。

场景库的构建需要通过 MIL 模型仿真、MAT⁃LAB/SIL 软件仿真设计和相应的软、硬件在环测试以及大量试验场景数据的积累,同时也需要通过不同车辆以及不同工况的实车系统测试,针对相关测试研究方法不断加以验证。

在这里插入图片描述

图 特殊的测试场景

如上图所示为特殊典型的测试场景示例。其中,

  1. 表示为对向两轮车冲突场景;
  2. 为两轮车右侧横穿冲突场景;
  3. 为两轮车左侧横穿冲突场景;
  4. 为左转车辆冲突场景;
  5. 为对向车辆冲突场景;
  6. 为同向车辆冲突场景;
  7. 为主车随前车减速以及自车与目标车跟随场景。

根据车辆的机动性、安全性等方面,动态的测试场景主要包括目标车与主车垂直碰撞场景、交叉路口场景、小目标场景、目标车与主车水平碰撞场景、目标车与主车跟随保持场景、目标车超越主车的场景等。同时,通过仿真设计和试验验证可以不断优化与完善测试场景的建设。

同时,根据真实交通数据对场景进行重建,进而提炼出危险场景即道路安全临界事件,形成智能驾驶虚拟 / 场地测试场景库,

再通过实车的开发测试,能够加快 ADAS 相关测试与评价,由此可以缩短实际智能驾驶车辆研发测试与评价的历程。

结论与展望

随着智能网联汽车产业及相关技术的快速发展,建立比较完备的智能网联汽车以及智能驾驶车辆运行安全性测试评价体系已经成为重要的课题,同时 ADAS 系统与 V2X 系统测试技术在不断发展,相关标准规范也在不断的进行完善。

对智能网联车辆技术路线和架构以及有关测试方法进行综述,基于对测试场景的建设规划和有关智能网联车辆测试评价的平台建设发展的介绍,提出可以科学的评判智能网联车辆的安全性、机动性、可靠性、通信性、智能性等性能的方式方法,为智能网联汽车乃至未来的无人驾驶车辆的研究提供了科学且比较系统全面的技术参考。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贯怀光

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值