智能网联汽车系统综述

本文探讨了智能网联汽车(CV)和自动驾驶汽车(AV)的区别,指出CV通过V2X通信提升交通安全,而AV的技术发展历经多个阶段。文章强调了术语误用导致公众误解,并列举了AV的不同级别及其挑战。CV面临高昂成本和区域实施不一致的问题,而AV的完全自动化水平尚待实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Connected and automated vehicle systems: Introduction and overview By Steven E. Shladover (2017)

智能化和网联化系统可以提升交通系统运行水平,但是大众媒体往往混淆了CV和AV的概念,本文旨在解释二者直接区别,并指出潜在的协同作用。

CV发展已超过15年,通过DSRC的建设和应用来提升交通系统。AV发展此起披伏,目前已是第四波,由美国国防部项目推动,Google的入局引领发展。

AV话题误导的原因之一在于不准确术语的使用,在牛津英语词典中,“automation”(自动化)的定义是用电子和机械设施来代替人力,但是目前其他术语“driverless”(无人驾驶)、“self-driving”(无人驾驶)、“autonomous”(自主的)等使用不合适。

无人驾驶意味着驾驶任务完全由机器完成,目前大部分系统达不到。自主驾驶以为着独立和自给自足,车辆需要靠自身完成驾驶任务,相当于最高水平的自动驾驶。如果车辆需要与外界信息交互和协商通行,那么用“协同”也比“自主”更合适。自主驾驶的概念实际上是无意义的,因为车辆总归是要服务人的需求驾驶,那么就永远达不到自主驾驶。Autonomous和Automated要注意区分开。

在这里插入图片描述

美国交通部:Vehicle-Infrastructure Integration (VII)
欧洲:Cooperative ITS
PATH:人车路协同

  • CV environment and options
  • V2V (vehicle to vehicle); 协同碰撞预警、协同冲突消解、刹车联动、协同自适应性巡航控制、紧密队列控制、交叉口/匝道协同通行、实时公交检测,
    这些技术对时效性和安全性具有高要求,需要低延迟、高可靠性系统支持
  • V2I (vehicle to infrastructure);交通状态检测、车辆检测、交通信号感应、电子收费
  • I2V (infrastructure to vehicle);交通信号感知、交通状态/天气感知、路线规划、封闭设施管制、行驶速度规划、队尾提醒、变道支持
  • V2P (vehicle to pedestrian); 包括行人、自行车
  • V2X (vehicle-to-anything). 类似于物联网概念

美国主推DSRC用于支持V2V和I2V
CV的发展具有一些限制:

  • 建设预算庞大,而后期的运行和维护更是费钱
  • 需要培训具有专业技能的人才来运营和使用
  • CV系统建设的费用和好处难以估计,需要研究院所和高校给政府决策
  • 区域建设不一致问题会导致CV车在未建设区域不能使用,影响购买者动力

自动驾驶汽车的发展历程比网联汽车更长久、也更复杂。从19世纪30年代以来,前后历经四个高潮,目前处于第四个高潮,是由Google的研究工作为标志之一,随后大量媒体的宣传,使得自动驾驶引起了全球关注。

当前自动驾驶发展挑战之一是管理公众、政府机构等对于自动驾驶不切实际的期待,在媒体的误导下,许多人以为自动驾驶将会在未来几年或几十年内就能实现。另一个挑战是对于自动驾驶术语的误用。

文中还指出,最高级别的自动驾驶可以颠覆交通系统的运营,但对于未来何时能够实现还未可知。而低级别的自动驾驶是目前迅速发展的,需要引起关注。

自动驾驶分级,但是对何时能实现需要有规划。
在这里插入图片描述

L1和L2在短期内都比较好实现,L1是驾驶辅助,一定程度上可以提高安全性,但L2系统应用,需要驾驶人时刻监督,但可能因其他活动而分心,因此安全性不太确定
L3需要接管,但是接管效率与安全性不能确定。L4可以代替驾驶人驾驶,但是需要确定确定好ODD。

### 智能网联汽车感知技术综述 #### 多传感器融合原理 智能网联汽车依赖多种类型的传感器来获取周围环境的信息,从而实现安全可靠的自动驾驶功能。多传感器融合是指将来自不同种类传感器的数据综合处理,以提高系统的鲁棒性和准确性。常见的传感器包括超声波、毫米波雷达、激光雷达(LiDAR)、视觉传感器以及全球定位系统(GPS)[^1]。 #### 各类传感器及其工作原理 - **超声波传感器**:用于短距离障碍物检测,在泊车辅助中有广泛应用。 - **毫米波雷达**:能够穿透雨雾雪等恶劣天气条件下的探测目标物体的距离速度角度信息,适用于全天候环境监测。 - **LiDAR (激光雷达)** :通过发射脉冲光束并测量反射时间差来构建三维空间模型,精度高但成本较高。 - **视觉传感器(摄像头)**:模仿人类眼睛的功能捕捉图像数据,并借助计算机视觉算法分析场景内容;可用于交通标志识别、行人检测等功能[^2]。 - **GPS/北斗导航卫星接收器**:提供地理位置坐标服务支持路径规划与跟踪定位需求。 #### 数据处理与决策制定过程 对于由上述各类设备收集到的信息,通常采用先进的机器学习或深度神经网络架构来进行模式分类和语义理解。例如,在车道保持辅助系统中,会先利用视觉传感器采集道路图像,再配合其他如转速传感器记录当前行驶状态参数(比如车速),还有方向盘转角传感装置监控转向动作情况。接着软件平台会对所获资料实施实时解析运算,一旦发现有偏移趋势即刻激活自动修正机制确保行车轨迹稳定于预定范围内。 #### 视觉传感器标定方法 为了保证视觉传感器所提供影像的质量及后续解读的有效性,必须对其进行精确校准。现有两种主流方式可供选择: - *传统标定*:此方案需准备专门设计好的图案板作为参考对象置于镜头前方一定位置处,操作人员手动输入若干组确切的空间坐标值供程序匹配对照完成整个流程设置。 - *自适应调整*:相比之下更为便捷灵活一些因为它不依赖额外硬件设施而是依靠自然环境中存在的固定结构特性自行推算相机内部外部参量关系达成目的[^3]。 ```python import cv2 as cv from matplotlib import pyplot as plt def calibrate_camera(image_paths): """模拟基于棋盘格的传统相机标定""" criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.001) objp = np.zeros((6*7,3), np.float32) objp[:,:2] = np.mgrid[0:7,0:6].T.reshape(-1,2) objpoints = [] # 3d point in real world space imgpoints = [] # 2d points in image plane. images = glob.glob('*.jpg') for fname in images: img = cv.imread(fname) gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY) ret,corners=cv.findChessboardCorners(gray,(7,6),None) if ret==True: objpoints.append(objp) corners2=cv.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria) imgpoints.append(corners2) img=cv.drawChessboardCorners(img,(7,6),corners2,ret) ret, mtx, dist, rvecs, tvecs = cv.calibrateCamera(objpoints,imgpoints,gray.shape[::-1],None,None) return mtx,dist,rvecs,tvecs mtx,dist,rvecs,tvecs=calibrate_camera(['chess_board_image.jpg']) print("内参矩阵:\n",mtx,"\n畸变系数:",dist) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值