tensorrt部署加速 2080ti

本文详细介绍YOLOv5模型的部署流程,包括使用pip安装YOLOv5及相关依赖、从GitHub克隆YOLOv5仓库、导出ONNX模型并进一步转换为TensorRT模型以加速推理过程。同时涉及模型预处理、后处理及推理速度优化等内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 pip3 install yolov5

2 pip3 install --upgrade protobuf

3 git clone git://github.com/ultralytics/yolov5

4 python export.py --include=onnx

5 netron yolov5s.onnx

6 更改yolov5.py model中的forward中的x[i].shape为map(int,x[i].shape)

在这里插入图片描述
在这里插入图片描述

还有一些batchsize改为-1,其他的维度相乘

7这时候的模型很干净为后续部署减少困难,继续改reshape

8得到onnx模型再导出为trtmodel,加载后进行推理

9这里预处理和后处理NMS都是python源脚本写的,推理提速1.6倍

10接着做

### 使用TensorRT部署YOLOv11模型 #### 准备工作环境 为了成功在服务器上使用TensorRT部署YOLOv11模型,需先确认已安装必要的软件包和库。这包括但不限于TensorRT版本8.0以上、OpenCV 3.4.0以上的版本以及其他可能依赖项[^4]。 #### 转换模型至ONNX格式 大多数情况下,YOLO系列模型训练完成后是以PyTorch或其他框架保存的形式存在。要利用TensorRT加速推理过程,则需要将此模型转换成ONNX格式。可以借助`torch.onnx.export()`函数完成这一操作: ```python import torch from yolov11 import YOLOv11 # 假设这是定义好的YOLOv11类 model = YOLOv11() dummy_input = torch.randn(1, 3, 640, 640) # 导出为onnx文件 torch.onnx.export(model, dummy_input, "yolov11.onnx", opset_version=11) ``` #### 构建并加载TensorRT引擎 一旦拥有了`.onnx`文件之后,就可以创建对应的TensorRT引擎了。下面是一个简单的Python脚本来展示这个过程的一部分逻辑: ```cpp #include <NvInfer.h> // ...省略其他头文件... int main() { // 创建Builder对象和其他必要组件... // 加载ONNX模型并构建ICudaEngine nvinfer1::IBuilder* builder = createInferBuilder(gLogger); nvonnxparser::IParser* parser = nvonnxparser::createParser(networkDefinition, gLogger); std::ifstream modelStream("yolov11.onnx"); assert(modelStream.good()); char buffer[constBufferSize]; modelStream.read(buffer, constBufferSize); parser->parse(&buffer[0], constBufferSize); // 完善网络设置...此处简化 // 序列化引擎以便后续快速加载 serializeAndSaveEngine(builder->buildCudaEngine(*network), "yolov11.trt"); return 0; } ``` 上述代码片段展示了如何读取ONNX文件并通过解析器将其转化为适合TensorRT使用的内部表示形式,最终得到序列化的CUDA引擎用于实际推断任务中[^1]。 #### 输入数据预处理与输出结果后处理 对于任何计算机视觉应用而言,在执行神经网络预测之前都需要对原始图像做一些标准化变换;同样地,当接收到网络给出的结果时也需要进一步解释这些数值才能获得有意义的信息。具体来说就是调整图片尺寸使其匹配预期输入大小(通常是正方形),以及归一化像素值范围等。而后者则涉及边界框解码、置信度阈值筛选等内容。 #### 实际运行性能考量 根据先前的经验分享可知,在配备有高性能GPU设备的情况下(例如GeForce RTX 2080 Ti),采用优化后的TensorRT方案可以在几毫秒内完成整个端到端的任务链路——从前处理到最后的决策输出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值